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A GENERALIZATION OF VINOGRADOV’S MEAN VALUE
THEOREM

SCOTT T. PARSELL

Abstract

We obtain new upper bounds for the number of integral solutions of a complete system of sym-
metric equations, which may be viewed as a multi-dimensional version of the system considered
in Vinogradov’s mean value theorem. We then use these bounds to obtain Weyl-type estimates
for an associated exponential sum in several variables. Finally, we apply the Hardy-Littlewood
method to obtain asymptotic formulas for the number of solutions of the Vinogradov-type system
and also of a related system connected to the problem of finding linear spaces on hypersurfaces.

1. Introduction

To motivate the topic of this paper, we consider the problem of demonstrating
that there exist many rational linear spaces of a given dimension lying on the
hypersurface defined by

c1z
k
1 + · · ·+ csz

k
s = 0. (1.1)

General results concerning the existence of such spaces are available from work of
Brauer [4] and Birch [3], and estimates for the density of rational lines on (1.1) have
been considered in recent work of the author (see [6] and [7]). A linear space of
projective dimension d− 1 is determined by choosing linearly independent vectors
x1, . . . ,xd ∈ Zs. Moreover, the space

L(x1, . . . ,xd) = {t1x1 + · · ·+ tdxd : t1, . . . , td ∈ Q}
is contained in the hypersurface defined by (1.1) if and only if x1, . . . ,xd satisfy the
system of equations

c1x
i1
11 · · ·xid

d1 + · · ·+ csx
i1
1s · · ·xid

ds = 0 (i1 + · · ·+ id = k). (1.2)

This is easily seen by substituting into (1.1) and using the multinomial theorem to
collect the coefficients of ti11 · · · tid

d for each d-tuple (i1, . . . , id) satisfying i1+· · ·+id =
k. We shall frequently abbreviate a monomial of the shape xi1

1 · · ·xid

d by xi. In order
to count solutions of the system (1.2) via the Hardy-Littlewood method, one needs
upper bounds for the number of solutions of the auxiliary symmetric system

xi
1 + · · ·+ xi

s = yi
1 + · · ·+ yi

s (i1 + · · ·+ id = k) (1.3)

lying in a given box. Our strategy for obtaining such estimates is similar to that
encountered in the application of Vinogradov’s mean value theorem to Waring’s
problem. Specifically, we consider the augmented system

xi
1 + · · ·+ xi

s = yi
1 + · · ·+ yi

s (1 ≤ i1 + · · ·+ id ≤ k), (1.4)
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where the number of equations here is

r =
(

k + d

d

)
− 1. (1.5)

Note that the classical version of Vinogradov’s mean value theorem (see for example
[10]) is concerned with the system (1.4) in the case d = 1. In this case, the sharpest
available results are due to Wooley [12]. The presence of the equations of lower
degree facilitates the application of a p-adic iteration method, in which repeated
use of the binomial theorem makes it essential to consider such equations together
with those of degree k.

In order to count solutions of (1.4), we need to analyze the exponential sum

f(α) = f(α; P ) =
∑

x∈[1,P ]d

e


 ∑

1≤|i|≤k

αixi


 , (1.6)

where we have written e(y) = e2πiy and |i| = i1 + · · ·+ id. Here and throughout, we
suppose that P is sufficiently large in terms of s, k, and d. Furthermore, we take
d to be fixed and suppose that k is sufficiently large in terms of d. Let Js,k,d(P )
denote the number of solutions of the system (1.4) with xm,ym ∈ [1, P ]d∩Zd. Then
by orthogonality we have

Js,k,d(P ) =
∫

Tr

|f(α)|2s dα, (1.7)

where Tr denotes the r-dimensional unit cube. Before considering upper bounds for
Js,k,d(P ), it is useful to derive an elementary lower bound. Let Js,k,d(P ;h) denote
the number of solutions of the system

s∑
m=1

(xi
m − yi

m) = hi (1 ≤ |i| ≤ k)

with xm,ym ∈ [1, P ]d ∩ Zd, and observe that

Js,k,d(P ;h) =
∫

Tr

|f(α)|2se(−α · h) dα ≤ Js,k,d(P ). (1.8)

Thus, by summing over all values of h for which Js,k,d(P ;h) is nonzero, we find
that

Js,k,d(P ) À P 2sd−K , (1.9)

where

K =
k∑

l=1

l

(
l + d− 1

l

)
(1.10)

is the sum of the degrees of the equations in (1.4). By considering diagonal solu-
tions, one also obtains the lower bound Js,k,d(P ) À P sd, but the expression in (1.9)
dominates whenever s > K/d. Moreover, an informal probabilistic argument sug-
gests that P 2sd−K represents the true order of magnitude. Thus we aim to establish
estimates of the shape

Js,k,d(P ) ¿ P 2sd−K+∆s , (1.11)

where ∆s = ∆s,k,d is small whenever s is sufficiently large in terms of k and d.
Whenever an estimate of the form (1.11) holds, we say that ∆s is an admissible
exponent for (s, k, d). Our main theorem is the following.
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Theorem 1.1. Suppose that k is sufficiently large in terms of d, and write

s0 = rk( 1
2 log k − log log k). (1.12)

Then the estimate (1.11) holds with

∆s =

{
rke2−2s/rk if 1 ≤ s ≤ s0,

r(log k)2e3−3(s−s0)/2rk if s > s0.

Somewhat more refined (and complicated) conclusions are given in Theorems
4.2 and 4.5 below, but the simplified version given above is sufficient for most
applications. We also note that Arkhipov, Chubarikov, and Karatsuba [1] have
obtained results of this type for related systems in which our condition 1 ≤ |i| ≤ k
is weakened to i ∈ [0, k]d. While estimates for Js,k,d(P ) can be derived from their
results, it is clear that admissible exponents decaying roughly like rke−s/rk are the
best that could be extracted from their methods. The superior decay achieved in
Theorem 1.1 results from a repeated efficient differencing approach first devised by
Wooley [12].

Standard methods exist for translating mean value estimates such as those given
in Theorem 1.1 into Weyl-type estimates for the exponential sum f(α), and we
state one such theorem below. When a is a vector in Zn, we find it useful to write
(q,a) for gcd(q, a1, . . . , an).

Theorem 1.2. Suppose that k is sufficiently large in terms of d and that |f(α)| ≥
P d−σ+ε for some ε > 0, where σ−1 ≥ 8

3rk log rk. Then there exist integers aj and
q, with (q,a) = 1, satisfying

1 ≤ q ≤ P kσ and |qαj − aj| ≤ P kσ−|j| (1 ≤ |j| ≤ k).

Some amount of technical effort is required to prove this, and in §5 we need to
establish some auxiliary results of this type (see Theorems 5.1 and 5.2), which may
be of interest in their own right for certain applications. A slightly sharper form
of Theorem 1.2 is actually given in Theorem 5.5, but the former suffices for our
purposes. For smaller k, one may be able to obtain results of this nature by a Weyl
differencing argument (see [6] for the case k = 3 and d = 2).

By applying Theorems 1.1 and 1.2 within the Hardy-Littlewood method, one can
show that ∆s = 0 is admissible in (1.11) when s is sufficiently large in terms of k
and d. Furthermore, the method yields an asymptotic formula for Js,k,d(P ).

Theorem 1.3. Suppose that k is sufficiently large in terms of d, and write

s1 = rk(2
3 log r + 1

2 log k + log log k + 2d + 4). (1.13)

There are positive constants C = C(s, k, d) and δ = δ(k, d) such that, whenever
s ≥ s1, one has

Js,k,d(P ) = (C + O(P−δ))P 2sd−K .

When d = 1, the lower bound on s can be improved somewhat. Specifically, the
coefficient 2/3 in the log r term can be replaced by 1/2 (see Wooley [15], Theorem
3), so that s1 ∼ k2 log k. The reason for this, roughly speaking, is that the number
of linearly independent monomials xi with |i| ≤ k − j differs from r by essentially
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jkd−1. The resulting loss of congruence data in the j-fold repeated differencing
algorithm (measured by the sum of the degrees of the equations that must be
ignored) therefore behaves roughly like jkd in general. When d = 1, however, the
loss is only about j2, since each equation that is removed has degree at most j.
Typically one takes j to be a power of log k, so it turns out that an unusually large
amount of information is retained in the d = 1 case as compared to the situation
when d ≥ 2.

We now indicate how to use estimates of the type (1.11) to obtain bounds for
the number of solutions of (1.3), which are relevant to counting linear spaces on
hypersurfaces. If we let Is,k,d(P ) denote the number of solutions of the system (1.3)
with xm,ym ∈ [1, P ]d ∩ Zd, then one has

Is,k,d(P ) =
∑

h

Js,k,d(P ;h),

where the summation is over all vectors h ∈ Zr with hi = 0 when |i| = k. The
number of choices of h for which Js,k,d(P ;h) 6= 0 is O(PK−L), where we have
written

L = k

(
k + d− 1

k

)
(1.14)

for the sum of the degrees of the equations in (1.3). We therefore see from (1.8)
that the estimate (1.11) yields

Is,k,d(P ) ¿ Js,k,d(P )PK−L ¿ P 2sd−L+∆s . (1.15)

Moreover, by imitating the argument leading to (1.9), one finds that Is,k,d(P ) À
P 2sd−L, so in each case ∆s measures the difference between the exponent in our
attainable bound and the best possible exponent. It is conceivable that a more
sophisticated strategy along the lines of Ford [5] could be applied to relate Is,k,d(P )
to Js,k,d(P ), but we do not pursue this here.

Estimates of the shape (1.15) enable one to establish an asymptotic formula for
the number of solutions of the system (1.2) lying in a given box, provided that s
is sufficiently large in terms of k and d and that certain local solubility conditions
are satisfied. Let Ns,k,d(P ) denote the number of solutions of the system (1.2) with
xlm ∈ [−P, P ] ∩ Z. The proof of the following theorem follows essentially the same
pattern as the proof of Theorem 1.3.

Theorem 1.4. Suppose that k is sufficiently large in terms of d and that s ≥
2s1, where s1 is as in (1.13). Further suppose that the system (1.2) has a non-
singular real solution and a non-singular p-adic solution for every prime p. Then
there are positive constants C = C(s, k, d; c) and ν = ν(k, d) such that

Ns,k,d(P ) = (C + O(P−ν))P sd−L.

In particular, this establishes the existence of many rational linear spaces of
projective dimension d−1 on the hypersurface (1.1), provided that s ≥ 2s1 and that
the appropriate local solubility conditions are met. Roughly speaking, the theorem
counts linear spaces up to a given height, weighted according to the number of
integral bases.

We sketch a proof of Theorem 1.4 towards the end of the paper, but our main
focus here is on the estimates of Theorems 1.1–1.3 for Js,k,d(P ) and the associated
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exponential sum f(α). In a future paper, we plan to investigate estimates for the
number of solutions of (1.2) in greater detail. In particular, if one only desires
an asymptotic lower bound for the number of solutions, then one can restrict to
solutions in R-smooth numbers, where R is a small power of P . In this case, the
system (1.3) can be considered directly by a variant of the Vaughan-Wooley iterative
method, and as a result the number of variables needed is reduced by roughly a
factor of k, just as in the situation of Waring’s problem. Thus, while something
on the order of kd+1 log k variables is required to prove the asymptotic formula,
one should be able to establish asymptotic lower bounds with only on the order
of kd log k variables. This latter expectation has already been established by the
author [7] in the case d = 2 with a leading coefficient of 14/3. For smaller k, one
can perform more precise analyses along the lines of [6] to obtain explicit numerical
bounds on the number of variables required.

2. Preliminary observations

Fundamental to our iterative method is an estimate for the number of non-
singular solutions to an associated system of congruences. In order to retain ad-
equate control over the singular solutions, however, we are forced to work with
systems somewhat smaller than (1.4). We find it convenient to place the indices i
in lexicographic order, so that one writes i ≺ j if and only if there exists l with
0 ≤ l < d such that i1 = j1, . . . , il = jl and il+1 < jl+1. We introduce the notation

rj =
(

k − j + d

d

)
− 1 (2.1)

for the number of equations in (1.4) with i Â j1, where we have written j1 for the
vector (j, 0, . . . , 0). Observe that rj is also the number of distinct monomials xi

with 1 ≤ |i| ≤ k − j. We further write

Kj =
k∑

l=j+1

l

(
l − j + d− 1

l − j

)
(2.2)

for the sum of the degrees of the equations in (1.4) with i Â j1. In particular, we
recall from (1.10) that K0 = K. Before proceeding, we find it useful to record a
closed formula for Kj .

Lemma 2.1. For 0 ≤ j ≤ k, one has

Kj =
dk + j

d + 1

(
k − j + d

d

)
− j.

Proof. We first establish the formula for j = 0. We have

K =
k∑

l=1

l

(
l + d− 1

l

)
=

k∑

l=1

d

(
l + d− 1

l − 1

)
=

k∑

l=1

d

[(
l + d

l − 1

)
−

(
l + d− 1

l − 2

)]
,

with the convention that
(

n
m

)
= 0 when m < 0. This latter sum telescopes to give

K = d

(
k + d

k − 1

)
= d

(
k + d

d + 1

)
=

dk

d + 1

(
k + d

d

)
, (2.3)
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as required. To handle Kj , we first re-index the sum (2.2) to get

Kj =
k−j∑

l=1

(l + j)
(

l + d− 1
l

)
= K[k − j] + jr[k − j],

where K[k − j] and r[k − j] denote the parameters K and r with k replaced by
k − j. Thus by applying (1.5) and (2.3) we obtain

Kj =
d(k − j)
d + 1

(
k − j + d

d

)
+ j

[(
k − j + d

d

)
− 1

]
,

and the lemma now follows easily.

Next, we let Bp,j(f ;u) denote the number of solutions x modulo pk of the system

fi(x) ≡ ui (mod p|i|) (i Â j1)

for which the rank of the Jacobian matrix (∂fi/∂xl) modulo p is rj .

Lemma 2.2. Let rj and Kj be as in (2.1) and (2.2), and let p be a prime. If
each fi is a polynomial in t variables with integer coefficients and t ≥ rj, then one
has

card Bp,j(f ;u) ¿ pkt−Kj ,

where the implicit constant depends at most on the degrees of the fi.

Proof. We start by choosing integers ai ≡ ui (mod p|i|) with 1 ≤ ai ≤ pk for
each i with i Â j1. It follows from the main theorem of Wooley [14] that the number
of non-singular solutions of the system of congruences

fi(x) ≡ ai (mod pk) (i Â j1)

is O(pk(t−rj)) for each choice of a. Now the number of choices for a is pω, where

ω =
∑

iÂj1

(k − |i|) = krj −Kj ,

and thus card Bp,j(f ;u) ¿ pkrj−Kj · pk(t−rj) = pkt−Kj .

The following result, based on the binomial theorem, enables our p-adic iteration
by transforming a system in which certain variables are classified according to
residue class modulo p to one in which a power of p divides both sides of each
equation in the system. This facilitates the introduction of a strong congruence
condition on the remaining variables, and it is here that we require the presence of
the equations of lower degree in (1.4). The method cannot be applied directly to
the system (1.3) that one wants to consider for the application to linear spaces on
hypersurfaces.

In what follows, when x, a, and i are d-dimensional vectors and p is a scalar,
we adopt the notation (px + a)i = (px1 + a1)i1 · · · (pxd + ad)id . We also let Ψi(z)
denote any function of d variables and let η1, . . . , ηn denote any real numbers.

Lemma 2.3. Every solution (z,w,x,y) of the system
r∑

n=1

ηn(Ψi(zn)−Ψi(wn)) =
s∑

m=1

((pxm + a)i − (pym + a)i) (1 ≤ |i| ≤ k) (2.4)
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is a solution of the system
r∑

n=1

ηn(Φi(zn)− Φi(wn)) = p|i|
s∑

m=1

(xi
m − yi

m) (1 ≤ |i| ≤ k), (2.5)

where

Φi(z) =
i1∑

l1=0

· · ·
id∑

ld=0

(
i1
l1

)
· · ·

(
id
ld

)
(−a)i−lΨl(z). (2.6)

Conversely, every solution of (2.5) is a solution of (2.4).

Proof. Suppose that (x,y, z,w) satisfies (2.4). By the binomial theorem, we
have

(px)i =
i∑

l=0

(
i

l

)
(px + a)l(−a)i−l,

where we adopt the convention that 00 = 1. Thus the right-hand side of (2.5) can
be expressed as

s∑
m=1




d∏

j=1

ij∑

l=0

(
ij
l

)
(pxmj + aj)l(−aj)ij−l −

d∏

j=1

ij∑

l=0

(
ij
l

)
(pymj + aj)l(−aj)ij−l




=
i1∑

l1=0

· · ·
id∑

ld=0

(
i1
l1

)
· · ·

(
id
ld

)
(−a)i−l

s∑
m=1

[(pxm + a)l − (pym + a)l]

=
r∑

n=1

ηn(Φi(zn)− Φi(wn)),

on substituting (2.4) and recalling (2.6). Conversely, suppose that (x,y, z,w) satis-
fies (2.5). Then on applying the binomial theorem, we find that the right-hand side
of (2.4) is given by

Si =
s∑

m=1




d∏

j=1

ij∑

l=0

(
ij
l

)
(pxmj)la

ij−l
j −

d∏

j=1

ij∑

l=0

(
ij
l

)
(pymj)la

ij−l
j




=
i1∑

l1=0

· · ·
id∑

ld=0

(
i1
l1

)
· · ·

(
id
ld

)
ai−l

r∑
n=1

ηn(Φl(zn)− Φl(wn)).

On substituting (2.6) and interchanging the order of summation, we obtain

Si =
i1∑

j1=0

· · ·
id∑

jd=0

(−1)−|j|ai−jΘ(i, j)
r∑

n=1

ηn(Ψj(zn)−Ψj(wn)),

where

Θ(i, j) =
d∏

t=1

it∑

l=jt

(−1)l

(
it
l

)(
l

jt

)
.

It now suffices to note that
i∑

l=j

(−1)l

(
i

l

)(
l

j

)
=

(
i

j

) i∑

l=j

(−1)l

(
i− j

i− l

)
= (−1)i

(
i

j

) i−j∑

l=0

(
i− j

l

)
(−1)l,
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which equals (−1)j if i = j and is zero otherwise. Therefore Θ(i, j) = (−1)|j| if j = i
and Θ(i, j) = 0 otherwise, whence the only contribution to the expression for Si

comes from the terms with j = i.

Next we need to say something about the types of system we will be working
with in our applications. The following definition covers the systems we need to
study.

Definition 2.4. We say that the system of polynomials (Ψ) is of type (j, P, A)
if the following conditions are satisfied.

(1) The system consists of polynomials Ψi ∈ Z[z1, . . . , zd], indexed by the vectors
i satisfying 1 ≤ |i| ≤ k.

(2) The polynomial Ψi has degree |i| − j when |i| ≥ j and is identically zero
otherwise.

(3) The coefficient of each term of degree |i| − j in Ψi is bounded in modulus by
AP j.

(4) For each i with i Â (j, 0, . . . , 0), the polynomial Ψi contains a term of degree
|i| − j that does not appear explicitly in any of the Ψi′ with |i′| = |i| and i′ Â i.

Condition (4) may be viewed as a sort of linear independence requirement and
will be important in estimating the number of singular solutions of our systems
of congruences. We also mention that if the system (Ψ) is of type (j, P, A), then
the system (Φ) defined by (2.6) is also of type (j, P, A), since the terms of highest
degree in Ψi and Φi are identical.

3. The efficient differencing apparatus

Fix k and d, let θ be a parameter with 0 < θ ≤ 1/k, and suppose that (Ψ) is a
system of type (j, P, A). Further, write j1 = (j, 0, . . . , 0). Then all the coefficients
of the terms of highest degree in each of the polynomials

∂Ψi

∂zl
(z) (i Â j1, 1 ≤ l ≤ d)

are bounded in absolute value by kAP k, so the number of prime divisors p of a given
non-zero coefficient with p > P θ is bounded in terms of k, A, and θ. Furthermore,
the total number of coefficients under consideration is bounded in terms of k and
d, so the total number of prime divisors of all these coefficients is bounded by a
constant c = c(k, d, A, θ). We let P(θ) denote the set consisting of the smallest
c + [1/θ] primes exceeding P θ. Clearly, if P is sufficiently large, then the Prime
Number Theorem ensures that P θ < p < 2P θ for all p ∈ P(θ).

For simplicity, we often write Js(P ) for Js,k,d(P ). Our goal in this section is to
develop an iterative method for bounding Js(P ) as s increases, and it is convenient
to increase s to s + r, where r is as in (1.5), at each stage of the iteration. Thus we
let Ks(P, Q;Ψ) denote the number of solutions of the system

r∑
n=1

(Ψi(zn)−Ψi(wn)) =
s∑

m=1

(xi
m − yi

m) (1 ≤ |i| ≤ k) (3.1)

with 1 ≤ znl, wnl ≤ P and 1 ≤ xml, yml ≤ Q. We also write Jac(Ψ; z,w) for the
rj × 2rd Jacobian matrix formed with the polynomials on the left-hand side for
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which i Â j1. Further, we let Ls(P, Q, θ, p;Ψ) denote the number of solutions of the
system

r∑
n=1

(Ψi(zn)−Ψi(wn)) = p|i|
s∑

m=1

(ui
m − vi

m) (1 ≤ |i| ≤ k) (3.2)

with z and w as above, with 1 ≤ uml, vml ≤ QP−θ, and with znl ≡ wnl (mod pk).
Finally, we write

Ls(P,Q, θ;Ψ) = max
p∈P(θ)

Ls(P,Q, θ, p;Ψ).

We are now ready to state our fundamental lemma. In what follows, we find it
convenient to write

qj =
(

j + d

d

)
− 1

to denote the number of equations in (1.4) of total degree at most j.

Lemma 3.1. Suppose that s ≥ 2qj − 1, that P θ ≤ Q ≤ P , and that (Ψ) is a
system of type (j, P, A) for some constant A = A(k, d). Then there is a system (Φ)
of type (j, P, A), given by (2.6), such that

Ks(P,Q;Ψ) ¿ P 2rd−(1−θ)(r+1)Js(Q) + P θ(2sd+ω(k,j,d))Ls(P, Q, θ;Φ),

where

ω(k, j, d) = krd−Kj − qj .

Proof. First of all, let S1 denote the number of solutions of (3.1) for which the
rank modulo p of Jac(Ψ; z,w) is less than rj for all primes p ∈ P(θ). Consider
a choice of z and w counted by S1. By construction, there exist distinct primes
p1, . . . , pt ∈ P(θ), where t = [1/θ], none of which divides any coefficient of a term
of maximal degree in any of the polynomials ∂Ψi/∂zl. Let p denote any one of the
primes p1, . . . , pt. If the rank modulo p of Jac(Ψ; z,w) is less than rj , then there
exists a non-trivial linear relation over Fp among the rows of this matrix. That is,
there exist ci ∈ Fp, not all zero, such that

∑

iÂj1

ci
∂Ψi

∂zl
(z) ≡ 0 (mod p) (3.3)

for z = z1, . . . , zr,w1, . . . ,wr and l = 1, . . . , d. The number of choices for the
coefficients ci is O(prj−1), since one of them may be normalized to 1. Now let I
denote the largest value of |i| for which the corresponding ci is non-zero, and let i
denote the smallest index (in the lexicographic ordering defined above) for which
|i| = I and ci is non-zero modulo p. By condition (4) of Definition 2.4, there is an
l with 1 ≤ l ≤ d such that ∂Ψi/∂zl contains a term of degree I − j − 1 that is not
present in any ∂Ψj/∂zl with |j| = I and j Â i, and this term is nonzero modulo p by
the definition of p1, . . . , pt. Thus, by considering terms of degree I− j−1, it follows
from the maximality of I that the polynomial on the left-hand side of (3.3) is not
identically zero in Fp[z]. Hence each zn and wn satisfies a non-trivial polynomial in
d variables over the field Fp, so the argument of the proof of Lemma 2 of Wooley
[13] shows that the number of choices for z and w modulo p is O(p2r(d−1)) for each
fixed choice of the ci. Thus, by the Chinese Remainder Theorem, the total number
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of possibilities for z and w modulo p1 · · · pt is ¿ (p1 · · · pt)2rd−r−1. For each such
choice, there are trivially at most (P/(p1 · · · pt))2rd choices for z and w, so it follows
from (1.8) that

S1 ¿ P 2rd(p1 · · · pt)−r−1Js(Q) ¿ P 2rd−(r+1)(1−θ)Js(Q). (3.4)

Now let S2 be the number of solutions for which the rank modulo p of Jac(Ψ; z,w)
is rj for some prime p ∈ P(θ); here p may of course depend on z and w. Then one
has

S2 ≤
∑

p∈P(θ)

S3(p),

where S3(p) is the number of solutions of (3.1) with Jac(Ψ; z,w) having rank rj

modulo p. Write

G(α; η) =
∑

z∈[1,P ]rd

e


 ∑

1≤|i|≤k

αisi(z;η)


 ,

where

si(z;η) = η1Ψi(z1) + · · ·+ ηrΨi(zr),

and let Gp(α;η) denote the same sum, but restricted to those z for which the rj×rd
matrix Jac(Ψ; z) has rank rj modulo p. After rearranging variables, one finds that

S3(p) ≤
∑

η∈{±1}r

∫

Tr

G(α;η)Gp(−α; η)|f(α; Q)|2s dα,

so by applying the Cauchy-Schwarz inequality we get

S3(p) ¿
(∫

Tr

|G(α; η)|2|f(α;Q)|2s dα

)1/2 (∫

Tr

|Gp(α; η)|2|f(α; Q)|2s dα

)1/2

for some η ∈ {±1}r. It is easy to see that G(α; η) may be expressed as a product
of r exponential sums, each in d variables. It follows by taking complex conjugates
that |G(α; η)| = |G(α;1)| and hence that the integral in the first factor above is
equal to Ks(P, Q;Ψ). Suppose that S2 ≥ S1. Then on noting that |P(θ)| ¿ 1, we
find that

Ks(P, Q;Ψ) = S1 + S2 ¿ max
p∈P(θ)

η∈{±1}r

S4(p; η), (3.5)

where S4(p; η) denotes the number of solutions of the system
r∑

n=1

ηn(Ψi(zn)−Ψi(wn)) =
s∑

m=1

(xi
m − yi

m) (1 ≤ |i| ≤ k) (3.6)

with both Jac(Ψ; z) and Jac(Ψ;w) having rank rj modulo p.
Since (Ψ) is of type (j, P, A), we have

s∑
m=1

(xi
m − yi

m) = 0 (1 ≤ |i| ≤ j),

so we can classify the solutions counted by S4(p) according to the common residue
classes of xi

1 + · · · + xi
s and yi

1 + · · · + yi
s modulo p. Thus we write Bp(w) for the
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set of solutions modulo p of the system of congruences
s∑

m=1

xi
m ≡ wi (mod p) (1 ≤ |i| ≤ j).

The main theorem of Wooley [14] shows that the number of non-singular solutions
counted by Bp(w) is O(psd−qj ). Moreover, since p ∈ P(θ), the argument used in
connection with the estimation of S1 above shows that the number of singular
solutions is O(pqj−1+s(d−1)). We therefore deduce that

card Bp(w) ¿ psd−qj , (3.7)

provided that s ≥ 2qj − 1. We now introduce the exponential sum

fp(α;y) =
∑

x∈[1,Q]d

x≡y (mod p)

e


 ∑

1≤|i|≤k

αixi




and note that

S4(p;η) =
∫

Tr

|Gp(α; η)|2
∑

w∈[1,p]qj

|Up(α;w)|2 dα,

where

Up(α;w) =
∑

(u1,...,us)∈Bp(w)

fp(α;u1) · · · fp(α;us).

It follows from Cauchy’s inequality and (3.7) that

|Up(α;w)|2 ¿ card Bp(w)
∑

u∈Bp(w)

|fp(α;u1) · · · fp(α;us)|2

¿ psd−qj

∑

u∈Bp(w)

s∑

i=1

|fp(α;ui)|2s,

and another application of (3.7) therefore yields

S4(p;η) ¿ p2sd−qj max
a∈[1,p]d

S5(a, p;η), (3.8)

where

S5(a, p;η) =
∫

Tr

|Gp(α;η)|2|fp(α;a)|2s dα.

Next we observe that S5(a, p; η) is the number of solutions of the system
r∑

n=1

ηn(Ψi(zn)−Ψi(wn)) =
s∑

m=1

((pxm + a)i − (pym + a)i) (1 ≤ |i| ≤ k)

with −al/p < xml, yml ≤ (Q−al)/p and with Jac(Ψ; z) and Jac(Ψ;w) both having
rank rj modulo p. By Lemma 2.3, we see that this is also equal to the number of
solutions of the system

r∑
n=1

ηn(Φi(zn)− Φi(wn)) = p|i|
s∑

m=1

(xi
m − yi

m) (1 ≤ |i| ≤ k),

where Φi(z) is given by (2.6). Moreover, one sees easily by applying elementary row
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operations that Jac(Ψ; z) and Jac(Φ; z) have the same rank. Let us write αp for
the r-dimensional vector whose component indexed by i is αip

|i|, and put

ti(z; η) = η1Φi(z1) + · · ·+ ηrΦi(zr).

Then we have

S5(a, p; η) ¿
∫

Tr

|Hp(α)2f(αp; QP−θ)2s| dα, (3.9)

where

Hp(α;η) =
∑
z

e


 ∑

1≤|i|≤k

αiti(z; η)


 ,

and where the sum is over all z1, . . . , zr ∈ [1, P ]d for which Jac(Φ; z) has rank rj

modulo p. Now let B∗p(u;Φ; η) denote the set of solutions z modulo pk to the system
of congruences

ti(z;η) ≡ ui (mod p|i|) (i Â j1)

with Jac(Φ; z) of rank rj modulo p. Put

Hp(α; z;η) =
∑

x∈[1,P ]rd

x≡z (mod pk)

e


 ∑

1≤|i|≤k

αiti(x;η)




and

Ip(α;η) =
∑
u

∣∣∣∣∣∣
∑

z∈B∗p(u;Φ;η)

Hp(α; z;η)

∣∣∣∣∣∣

2

,

where the summation is over u with 1 ≤ ui ≤ p|i| for each i Â j1. By Cauchy’s
inequality, we have

Ip(α; η) ≤
∑
u

card B∗p(u;Φ; η)
∑

z∈B∗p(u;Φ;η)

|Hp(α; z; η)|2,

and Lemma 2.2 tells us that

card B∗p(u;Φ; η) ¿ pkrd−Kj .

Thus from (3.8) and (3.9) we finally obtain

S4(p; η) ¿ p2sd−qj

∫

Tr

Ip(α;η)|f(αp;QP−θ)|2sdα

¿ p2sd+ω(k,j,d)
∑

z∈[1,pk]rd

∫

Tr

|Hp(α; z;η)2f(αp; QP−θ)2s| dα,

and the lemma now follows from (3.4) and (3.5) on noting that |Hp(α; z; η)| =
|Hp(α; z;1)| and considering the underlying diophantine equations.

We now develop a differencing lemma that allows us to repeat the procedure
embedded in the above result.

Lemma 3.2. Suppose that P θ ≤ Q ≤ P , write H = P 1−kθ, and let (Φ) be a
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system of type (j, P, A). Then there exist h ∈ [−H, H]d ∩ (Z \ {0})d and p ∈ P(θ)
such that

Ls(P,Q, θ;Φ) ¿ P (2d−1−(d−1)kθ)rJs(QP−θ)+Hdr
(
Ks(P, QP−θ;Υ)Js(QP−θ)

)1/2
,

where we have

Υi(z) = p−|i|(Φi(z + hpk)− Φi(z)) (1 ≤ |i| ≤ k).

Proof. Fix a prime p ∈ P(θ). We have Ls(P, Q, θ, p;Φ) = U0 + U1, where U0

denotes the number of solutions of (3.2), with Ψ replaced by Φ, for which znl = wnl

for some n and l, and where U1 is the number of solutions with znl 6= wnl for all n
and l.

First of all, suppose that U0 ≥ U1. In view of the congruence conditions on z and
w, we have

U0 ¿ P 2d−1−(d−1)kθ

∫

Tr

gp(α)r−1|f(αp; QP−θ)|2s dα,

where

gp(α) =
∑

z∈[1,pk]d

∣∣∣∣∣∣∣∣∣

∑

x∈[1,P ]d

x≡z (mod pk)

e


 ∑

1≤|i|≤k

αiΦi(x)




∣∣∣∣∣∣∣∣∣

2

.

It now follows from Hölder’s inequality that U0 is bounded above by

P 2d−1−(d−1)kθ

(∫

Tr

gp(α)r|f(αp; QP−θ)|2sdα

)1−1/r(∫

Tr

|f(αp; QP−θ)|2sdα

)1/r

,

so on considering the underlying diophantine equations we see that

Ls(P, Q, θ, p;Φ) ¿ P (2d−1−(d−1)kθ)rJs(QP−θ). (3.10)

Now suppose instead that U1 ≥ U0. Then we can write

wnl = znl + hnlp
k (1 ≤ n ≤ r, 1 ≤ l ≤ d),

where the hnl are integers satisfying 1 ≤ |hnl| ≤ H. We therefore see that U1 is
bounded above by the number of solutions of the system

r∑
n=1

Υi(zn;hn; p) =
s∑

m=1

(ui
m − vi

m) (1 ≤ |i| ≤ k)

with zn ∈ [1, P ]d, with hn as above, and with um,vm ∈ [1, QP−θ]d. Now write

Wp(α;h) =
∑

z∈[1,P ]d

e


 ∑

1≤|i|≤k

αiΥi(z;h; p)


 . (3.11)

Then we have

U1 ≤
∫

Tr

(∑

h

Wp(α;h)

)r

|f(α; QP−θ)|2s dα,

where the summation is over h1, . . . , hd with 1 ≤ |hl| ≤ H. Furthermore, by Hölder’s
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inequality, one has
(∑

h

Wp(α;h)

)r

¿ Hd(r−1)
∑

h

|Wp(α;h)|r.

Thus, by applying the Cauchy-Schwarz inequalities, we deduce that U1 is bounded
above by
(

H2d(r−1)+d

∫

Tr

∑

h

|Wp(α;h)2rf(α; QP−θ)2s| dα

)1/2(∫

Tr

|f(α;QP−θ)|2s dα

)1/2

,

and the integral in the first factor is bounded by HdKs(P,QP−θ;Υ), where Υi =
Υi(z;h; p) for some h. The lemma now follows on recalling (3.10) and taking the
maximum over primes p ∈ P(θ).

In order to use Lemmas 3.1 and 3.2, we must describe the polynomials Ψi to which
we want to apply these results and then verify that they satisfy the conditions of
the lemmas. To this end, we first define the difference operator ∆j recursively by

∆1(f(z);h) = f(z + h)− f(z)

and

∆j+1(f(z);h1, . . . ,hj+1) = ∆1(∆j(f(z);h1, . . . ,hj);hj+1),

and we adopt the convention that ∆0(f(z)) = f(z). Next we define Ψi,j recursively
by taking Ψi,0(z) = zi and setting

Ψi,j+1(z;h;p) = p
−|i|
j+1∆1(Φi(z;Ψj(z;h1, . . . ,hj ; p1, . . . , pj));hj+1p

k
j+1),

where the polynomials Φi(z;Ψ) are defined by (2.6) and where we have written Ψj

for the set of all Ψi,j with 1 ≤ |i| ≤ k. Since the terms of highest degree in Ψi,j(z)
and Φi(z;Ψj) are identical, we have

Ψi,j(z;h;p) = (p1 · · · pj)−|i|∆j(zi;h1p
k
1 , . . . ,hjp

k
j ) + E(z;h;p), (3.12)

where E(z;h;p) has total degree strictly less than |i|− j in the variables z1, . . . , zd.
We typically think of h and p as fixed and regard Ψi,j as a polynomial in z.
When h = (h1, . . . ,hj) is a j-tuple of d-dimensional vectors, we find it useful to
let h∗ denote the corresponding d-tuple of j-dimensional vectors formed by taking
the transpose of the underlying matrix, so that h∗l = (h1l, . . . , hjl). We start by
relating our vector difference operator to the more familiar scalar one. When A =
{i1, . . . , im} and B = {j1, . . . , jt} with A ∩ B = ∅, we write

Dt(f(z);h;A;B) = ∆t(f(z + hi1 + · · ·+ him); hj1 , . . . , hjt),

where ∆t is the one-dimensional version of the difference operator defined above.

Lemma 3.3. One has

∆j(zi;h1, . . . ,hj) =
∑

A1t···tAd={1,...,j}

d∏

l=1

D|Al|(z
il

l ;h∗l ;A1 ∪ · · · ∪ Al−1;Al).
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Proof. We proceed by induction on j. First of all, we have

∆0(zi) = zi1
1 · · · zid

d =
d∏

l=1

D0(zil

l ; ∅; ∅).

Now suppose that the result holds with j replaced by j − 1. Then by the induction
hypothesis and the linearity of ∆1, we have

∆j(zi;h1, . . . ,hj) = ∆1(∆j−1(zi;h1, . . . ,hj−1);hj)

=
∑

A1t···tAd={1,...,j−1}

(
d∏

l=1

fl(zl + hjl)−
d∏

l=1

fl(zl)

)
,

where

fl(z) = D|Al|(z
il ;h∗l ;A1 ∪ · · · ∪ Al−1;Al).

Note that, for any complex numbers al and bl, one has
d∏

l=1

al −
d∏

l=1

bl =
d∑

l=1

(al − bl)
∏

m>l

am

∏

m<l

bm.

We therefore find that
d∏

l=1

fl(zl + hjl)−
d∏

l=1

fl(zl) =
d∑

l=1

D|Al|+1(z
il

l ;h∗l ; Cl−1;Al ∪ {j})Yl(z;h),

where we have written Cl−1 for A1 ∪ · · · ∪ Al−1, and where

Yl(z;h) =
∏

m>l

D|Am|(z
im
m ;h∗m; Cm−1 ∪ {j};Am)

∏

m<l

D|Am|(z
im
m ;h∗m; Cm−1;Am).

It follows that

∆j(zi;h1, . . . ,hj) =
d∑

l=1

∑

B1t···tBd={1,...,j}
j∈Bl

d∏

l=1

D|Bl|(z
il

l ;h∗l ;B1 ∪ · · · ∪ Bl−1;Bl),

and this gives the result.

We are now in a position to analyze the polynomials Ψi,j defined above.

Lemma 3.4. Fix j with 0 ≤ j < k, and suppose that h1, . . . ,hj ∈ Zd and
p1, . . . , pj ∈ Z have the property that 0 < |hnlp

k
n| ≤ cP whenever 1 ≤ n ≤ j

and 1 ≤ l ≤ d. Then the polynomials Ψi,j form a system of type (j, P, A), where
A = cj(k!)d+1.

Proof. It is easy to show (see for example Vaughan [9], Exercise 2.1) that the
leading term of Dt(zi;h;A;B) is

g(z) =
i!

(i− t)!

(∏

n∈B
hn

)
zi−t,

and it therefore follows from (3.12) and Lemma 3.3 that the terms of highest degree
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in Ψi,j(z;h;p), which we denote by Gi,j(z), are given by

(p1 · · · pj)−|i|
∑

A1t···tAd={1,...,j}

(
d∏

l=1

il!
(il − |Al|)!

∏

n∈Al

hnlp
k
n

)
z

i1−|A1|
1 · · · zid−|Ad|

d .

Conditions (1), (2), and (3) of Definition 2.4 follow immediately. To check condition
(4), we fix i with i Â j1 (so in particular i1 ≥ j) and consider the term zi1−j

1 zi2
2 · · · zid

d

arising from the choice A1 = {1, . . . , j} in the expression for Gi,j(z) above. Suppose
now that there is some i′ with |i′| = |i| such that Ψi′,j(z) (and hence Gi′,j(z))
contains the term zi1−j

1 zi2
2 · · · zid

d . If i′1 = i1, then this term must again arise from
the choice A1 = {1, . . . , j}, and it follows that i′ = i. Otherwise, we must have
i′1 < i1, which implies that i′ ≺ i.

Note that in our applications we can take c = 2k in the above lemma, since
the prime p used at each stage satisfies P θ < p ≤ 2P θ for some θ ≤ 1/k, and the
corresponding values of h1, . . . , hd are bounded in modulus by H = P 1−kθ. Starting
with j = 0, we apply Lemma 3.1 to the system (Ψ) = (Ψj) and then apply Lemma
3.2 with (Φ) = (Φj), where Φj = Φ(Ψj) is given by (2.6). This puts us in position
to apply Lemma 3.1 again with (Ψ) replaced by the system (Υ) = (Ψj+1) and
hence to repeat the process.

4. Mean value theorems

By using only first differences, one obtains the following simple result, which
is useful for generating some preliminary admissible exponents. When ∆s is an
admissible exponent, we sometimes refer to the quantity λs = 2sd −K + ∆s as a
permissible exponent.

Theorem 4.1. If ∆s is an admissible exponent satisfying ∆s ≤ (k − 1)(r + 1),
then the exponent ∆s+r = ∆s(1− 1/k) is also admissible.

Proof. By Lemma 3.1, we have

Ks(P, P ;Ψ0) ¿ P 2rd−(1−θ)(r+1)Js(P ) + P θ(2sd+krd−K)Ls(P, P, θ;Φ0),

and the argument of the proof of Lemma 3.2 gives

Ls(P, P, θ;Φ0) ¿ P (2d−1−(d−1)kθ)rJs(P 1−θ)+
∫

Tr

∣∣∣∣∣
∑

h

Wp(α;h)

∣∣∣∣∣

r

|f(α; P 1−θ)|2s dα

for some p ∈ P(θ), where Wp(α;h) is as in (3.11) and where the summation is over
h ∈ [−H, H]d. Taking θ = 1/k gives H = 1, so after making a trivial estimate we
find that

Ls(P, P, θ;Φ0) ¿ P rdJs(P 1−θ),

whence

Ks(P, P ;Ψ0) ¿ P 2rd−(1−θ)(r+1)Js(P ) + P rd+θ(2sd+krd−K)Js(P 1−θ).

Suppose that the exponent λs = 2sd − K + ∆s is permissible, where one has
∆s ≤ (k − 1)(r + 1). Then we have

Js+r(P ) ¿ Ks(P, P ;Ψ0) ¿ PΛ1 + PΛ2 ,
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where
Λ1 = 2(s + r)d−K + ∆s − (1− θ)(r + 1)

and

Λ2 = rd + θ(2sd + krd−K) + (1− θ)λs = 2(s + r)d−K + ∆s(1− θ).

The inequality ∆s ≤ (k− 1)(r + 1) shows that Λ1 ≤ Λ2, and the exponent ∆s+r =
(1− 1/k)∆s is therefore admissible.

We can obtain somewhat stronger results via repeated differencing. The following
theorem, while not in a form convenient for direct application, provides our sharpest
admissible exponents for large values of s and k. In stating our theorem, we shall
find it convenient to introduce the notation

ΩJ = K −KJ − qJ , (4.1)

which we loosely view as a measurement of the loss of potential congruence infor-
mation suffered at the Jth difference.

Theorem 4.2. Let u be a positive integer with u ≥ r, suppose that ∆u ≤
(k − 1)(r + 1) is an admissible exponent, and let j be an integer with 1 ≤ j ≤ k.
For each positive integer l, we write s = u + lr and define the numbers φ(j, s, J),
θs, and ∆s recursively as follows. Given a value of ∆s−r, we set φ(j, s, j) = 1/k
and evaluate φ(j, s, J − 1) successively for J = j, . . . , 2 by setting

φ∗(j, s, J − 1) =
1
2k

+
(

1
2

+
ΩJ−1 −∆s−r

2kr

)
φ(j, s, J), (4.2)

and
φ(j, s, J − 1) = min{1/k, φ∗(j, s, J − 1)}.

Finally, we set
θs = min

1≤j≤k
φ(j, s, 1)

and
∆s = ∆s−r(1− θs) + r(kθs − 1). (4.3)

Then ∆s is an admissible exponent for s = u + lr for all positive integers l.

Proof. Let us initially fix s ≥ u + r, and suppose that λs is a permissible
exponent. In view of the hypothesis on ∆u, we may clearly suppose that ∆s = λs−
2sd+K ≤ (k−1)(r+1). Take j to be the least integer for which φ(j, s+r, 1) = θs+r,
and write φJ = φ(j, s + r, J) for J = j, . . . , 1. Also note that the minimality of j
ensures that φJ < 1/k whenever J < j. We adopt the notation

Mi = Pφi , Hi = PM−k
i , Qi = P (M1 · · ·Mi)−1 (1 ≤ i ≤ j),

with the convention that Q0 = P . We first show inductively that

Ls(P,QJ , φJ+1;ΦJ ) ¿ P (2d−1−(d−1)kφJ+1)rQλs

J+1 (4.4)

for each J = j − 1, . . . , 0. First of all, Lemma 3.2 gives

Ls(P,Qj−1, φj ;Φj−1) ¿ P (2d−1−(d−1)kφj)rJs(Qj) + Hdr
j (Ks(P, Qj ;Ψj)Js(Qj))1/2.
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Since φj = 1/k, we have Hj = 1, so a trivial estimate yields

Ls(P, Qj−1, φj ;Φj−1) ¿ P drQλs
j ,

and (4.4) follows in the case J = j − 1. Now suppose that (4.4) holds for J . Then
by Lemmas 3.1 and 3.2 we have

Ls(P, QJ−1, φJ ;ΦJ−1) ¿ P (2d−1−(d−1)kφJ )rJs(QJ) + Hdr
J Qλs

J (T1 + T2)1/2,

where

T1 = P 2rd−r−1Mr+1
J+1 and T2 = P 2rd−rM

2sd+ω(k,J,d)−r(d−1)k−λs

J+1 .

A simple calculation reveals that T1 ≤ T2, provided that an exponent ∆s satisfying
∆s ≤ (k − 1)(r + 1) + ΩJ is admissible, and this latter inequality follows from our
earlier remarks, since it is clear from (4.1) that ΩJ ≥ 0. Thus we find that

Ls(P, QJ−1, φJ ;ΦJ−1) ¿ Qλs

J (PΛ1 + PΛ2),

where
Λ1 = (2d− 1− (d− 1)kφJ)r

and

Λ2 = dr(1− kφJ) + dr − r

2
+

φJ+1

2
(2sd + ω(k, J, d)− r(d− 1)k − λs).

It follows with a little computation from (4.1), (4.2), and our initial remarks that
in fact Λ1 = Λ2, and we therefore obtain (4.4) with J replaced by J − 1. We now
apply (4.4) with J = 0 to conclude that

Ls(P, P, φ1;Φ0) ¿ P (2d−1−(d−1)kφ1)r+(1−φ1)λs .

Thus Lemma 3.1 gives

Js+r(P ) ¿ Ks(P, P ;Ψ0) ¿ PΛ3 + PΛ4 ,

where
Λ3 = 2rd− (1− φ1)(r + 1) + λs

and
Λ4 = φ1(2sd + krd−K) + (2d− 1− (d− 1)kφ1)r + (1− φ1)λs.

Since ∆s ≤ (k− 1)(r + 1), we find after a short computation that Λ3 ≤ Λ4, whence
the exponent

λs+r = φ1(2sd + krd−K) + (2d− 1− (d− 1)kφ1)r + (1− φ1)λs

= 2(s + r)d−K + ∆s(1− φ1) + r(kφ1 − 1)

is permissible. The theorem follows by induction on recalling that φ1 = θs+r.

We now need to gain some understanding of the size of the admissible exponents
provided by Theorem 4.2, and this is achieved by a fairly standard argument (see for
example [7], [11], [12], and [16] for similar analyses). The following lemma provides
the starting point by relating these exponents to the roots of a transcendental
equation.

Lemma 4.3. Suppose that s ≥ 2r and that ∆s−r is an admissible exponent
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satisfying r(log k)2 < ∆s−r ≤ (k − 1)(r + 1). Write δs−r = ∆s−r/(rk), and define
δs to be the unique (positive) solution of the equation

δs + log δs = δs−r + log δs−r − 2
k

+
2

k(log k)3/2
. (4.5)

Then the exponent ∆s = rkδs is admissible.

Proof. We apply Theorem 4.2 with j = [(log k)1/3]. Then on writing θs =
φ(j, s, 1), we find that the exponent

∆s = ∆s−r(1− θs) + r(kθs − 1) = rkδs−r − r + rkθs(1− δs−r) (4.6)

is admissible. For 0 ≤ J < j, we see from (4.1) and Lemma 2.1 that

ΩJ ≤ dk

d + 1

[(
k + d

d

)
−

(
k − j + d

d

)]
≤ r(log k)1/2

for k sufficiently large. Thus on writing φJ for φ(j, s, J), we deduce from (4.2) that

φJ−1 ≤ 1
2k

+
1
2
(1− δ′)φJ (2 ≤ J ≤ j), (4.7)

where

δ′ =
∆s−r − r(log k)1/2

kr
> δs−r(1− (log k)−3/2), (4.8)

the last inequality following from the hypothesis ∆s−r > r(log k)2. Using a down-
ward induction via (4.7), one easily verifies that

φJ ≤ 1
k(1 + δ′)

(
1 + δ′

(
1− δ′

2

)j−J
)

(1 ≤ J ≤ j),

so in particular we have

θs = φ1 ≤ 1 + δ′21−j

k(1 + δ′)
, (4.9)

since 0 < δ′ < 1. Let us temporarily introduce the notation L = (log k)−3/2. Since
(1+αx)/(1+x) is a decreasing function of x whenever α < 1, we deduce from (4.8)
and (4.9) that

θs ≤ 1 + δs−r(1− L)21−j

k(1 + δs−r(1− L))
≤ 1 + δs−r(21−j + L)

k(1 + δs−r)
≤ 1 + 2δs−rL

k(1 + δs−r)
,

provided that k is large enough so that j ≥ 1 + log2(log k)3/2. It now follows with
a little computation from (4.6) that

∆s

rk
≤ δs−r

(
1− 2− w

k(1 + δs−r)

)
,

where w = 2(1− δs−r)L. Since log(1− x) ≤ −x for 0 < x < 1, we obtain

∆s

rk
+ log

∆s

rk
≤ δs−r

(
1− 2− w

k(1 + δs−r)

)
+ log δs−r − 2− w

k(1 + δs−r)

≤ δs−r + log δs−r − 2
k

+
2

k(log k)3/2

on inserting the bound w ≤ 2L. Now δ +log δ is an increasing function of δ, so if δs

is defined by (4.5), it must be the case that ∆s/(rk) ≤ δs, and it follows that rkδs

is an admissible exponent.
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Lemma 4.4. If k > d + 1, then the exponent ∆4r = r(k − 2) is admissible.

Proof. First of all, the exponent ∆r = K is trivially admissible, and it follows
easily from Lemma 2.1 that K ≤ (k − 1)(r + 1) whenever k ≥ d + 1. Thus we may
apply Theorem 4.1 successively to deduce that the exponent ∆4r = K(1 − 1

k )3 is
admissible, and one has

∆4r ≤ rk(1− 1
k )3 ≤ rk − 3r(1− 1

k ) ≤ r(k − 2)

whenever k ≥ 3, which establishes the lemma.

On combining Lemma 4.4 with Theorem 4.1, we can produce admissible expo-
nents ∆s satisfying ∆s ¿ rke−s/rk. We are now in a position to state the stronger
mean value estimates arising from repeated differencing in a form convenient for
application.

Theorem 4.5. Suppose that k is sufficiently large in terms of d, define s0 and
s1 as in (1.12) and (1.13), and write L = (log k)2. Then the exponents ∆s defined
by

∆s =

{
rke2−2s/rk if 1 ≤ s ≤ s0,

e2+2/krL
(
1− 3

2k (1− d
2L )

)(s−s0)/r
if s0 < s ≤ s1

are admissible.

Proof. We define δs to be the unique positive solution of the equation

δs + log δs = 1− 2(s− 4r)
rk

+
2(s− 4r)

rk(log k)3/2
. (4.10)

We show inductively that the exponent ∆s = rkδs is admissible whenever 4r <
s ≤ s0. First of all, suppose that 4r < s ≤ 5r. Then by Lemma 4.4 we know that
∆∗

s = r(k − 2) is admissible, and furthermore

∆∗
s

rk
+ log

∆∗
s

rk
< 1− 2

k
< δs + log δs,

since 0 < s − 4r ≤ r. It follows that ∆∗
s/(rk) < δs, and hence ∆s = rkδs is

admissible. Now suppose that 5r < s ≤ s0 and that the exponent ∆s−r = rkδs−r

is admissible. Then we have

δs−r + log δs−r > 1− 2(s0 − 4r)
rk

> 1− log k + 2 log log k.

Since δs−r < 1, we deduce that δs−r > (log k)2/k, and thus

∆′
s−r = min{∆s−r, (k − 1)(r + 1)}

satisfies the hypotheses of Lemma 4.3. We therefore conclude that the exponent
∆′

s = rkγs is admissible, where γs is the positive root of the equation

γs + log γs = δ′s−r + log δ′s−r −
2
k

+
2

k(log k)3/2
,

and where δ′s−r = ∆′
s−r/(rk) ≤ δs−r. On applying (4.10) with s replaced by s− r,

we find that γs + log γs ≤ δs + log δs, and hence γs ≤ δs. Thus ∆s = rkδs is
admissible.
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To complete the proof of the theorem, we first note that the result holds trivially
for 1 ≤ s ≤ 4r, since K ≤ rk. For 4r < s ≤ s0, we see from (4.10) that

log δs ≤ 2− 2s

rk
,

provided that k is sufficiently large. Finally, if s > s0, we take t to be the integer
with s0 − r < t ≤ s0 and t ≡ s (mod r). Then we know that ∆t = rke2−2t/rk is an
admissible exponent, and we have

e2r(log k)2 ≤ ∆t < e2+2/kr(log k)2. (4.11)

We now apply Theorem 4.2 with j = 2 and s replaced by t + r. In the notation of
that theorem, we have φ(2, t + r, 2) = 1/k, and thus

φ∗(2, t + r, 1) =
1
2k

+
(

1
2

+
Ω1 −∆t

2kr

)
1
k

=
1
k

+
Ω1 −∆t

2k2r
.

It therefore follows from (4.3) that the exponent

∆t+r = ∆t

(
1− 3

2k
+

∆t − Ω1

2k2r

)
+

Ω1

2k
(4.12)

is admissible. A simple calculation reveals that Ω1 = (d−1)r(1+O(1/k)), and thus
(4.11) gives Ω1 ≤ dL−1∆t for k sufficiently large. Hence on iterating (4.12), we find
that the exponent

∆s = ∆t

(
1− 3

2k

(
1− d

2L

))(s−t)/r

is admissible, and the theorem follows on substituting (4.11) and recalling that
t ≤ s0.

To deduce Theorem 1.1, we note that

1− 3
2k

(
1− d

2L

)
≤

(
1− 3

2k

) (
1 +

d

kL

)

for k ≥ 6, and thus
(

1− 3
2k

(
1− d

2L

))k

≤ e−3/2 · ed/L.

Theorem 1.1 now follows immediately from Theorem 4.5 when s ≤ s1. For s > s1,
it follows from Theorem 1.3 that we may take ∆s = 0, so Theorem 1.1 holds in that
case as well (but is of little value). The remainder of the paper is largely devoted
to the proof of Theorem 1.3, which uses Theorem 1.1 only with s ≤ s1.

5. Weyl-type estimates

In this section, we aim to deduce Theorem 1.2 from the bounds provided by
Theorem 1.1. Our strategy combines ideas of Vaughan and Baker and actually
leads to a result (Theorem 5.5) containing somewhat more information than given
by Theorem 1.2. We first use the large sieve as in Vaughan [9] to get a preliminary
estimate in terms of a rational approximation to some αj. We then use this result
within a similar argument devised by Baker to control the least common multiple
of the denominators of the various rational approximations. This strategy gives
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information only about the αj with |j| ≥ 2, so the remaining ingredient is an
analogue of Baker’s final coefficient lemma. Our preliminary estimate is as follows.

Theorem 5.1. Fix j with 2 ≤ |j| ≤ k, and let q ≥ 1 and a be relatively prime
integers satisfying |qαj − a| ≤ q−1. Further, let s be any positive integer, and let
∆ = ∆s,k−1,d denote an admissible exponent for (s, k − 1, d). Then one has

|f(α)| ¿ P d[P∆(qP−|j| + P−1 + q−1)]1/2s log P.

Proof. We follow the argument of the proof of Vaughan [9], Theorem 5.2. We
start by performing a Weyl shift with respect to the variable x1. Consider a set
M⊆ [1, P ] ∩ Z with |M| = M . Then, for any m ∈M, one has

f(α) =
∑

x1∈[1+m,P+m]
x2,...,xd∈[1,P ]

e


 ∑

1≤|i|≤k

αi(x1 −m)i1xi2
2 · · ·xid

d




=
∫1

0

∑

x1∈[1,2P ]
x2,...,xd∈[1,P ]

e


 ∑

1≤|i|≤k

αi(x1 −m)i1xi2
2 · · ·xid

d + x1β




P+m∑
y=1+m

e(−yβ) dβ.

Summing over all m ∈M, we find that

M |f(α)| ¿
∫1

0

∑

m∈M
|g(m,β)|min(P, ||β||−1) dβ,

where

g(m,β) =
∑

x1∈[1,2P ]
x2,...,xd∈[1,P ]

e


 ∑

1≤|i|≤k

αi(x1 −m)i1xi2
2 · · ·xid

d + x1β


 .

It follows that

|f(α)| ¿ M−1

(
sup

β∈[0,1]

∑

m∈M
|g(m, β)|

)
log P,

and an application of Hölder’s inequality yields

|f(α)|2s ¿ M−1(log P )2s
∑

m∈M
|g(m,β)|2s (5.1)

for some β ∈ [0, 1]. We now aim to express |g(m, β)|2s in a form to which a version
of the large sieve can be applied. By the binomial theorem, we have

∑

1≤|i|≤k

αi(x1 −m)i1xi2
2 · · ·xid

d =
∑

1≤|i|≤k

αi

i1∑

j1=0

(
i1
j1

)
(−m)i1−j1xj1

1 xi2
2 · · ·xid

d .

We first split off the terms on the right for which j1 + i2 + · · ·+ id ∈ {0, k}. Then
on writing j = (j1, i2, . . . , id) and interchanging the order of summation in the
remaining terms, one finds that

∑

1≤|i|≤k

αi(x1 −m)i1xi2
2 · · ·xid

d =
∑

|i|=k

αixi +
k∑

i=1

αi,0,...,0(−m)i +
∑

1≤|j|≤k−1

γj(m)xj,
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where

γj(m) =
k−(j2+···+jd)∑

i=j1

(
i

j1

)
αi,j2,...,jd

(−m)i−j1 . (5.2)

Write
Γ = {γ(m) : m ∈M} ⊆ Rq,

where q =
(
k−1+d

d

)− 1, and

N =
∏

1≤|j|≤k−1

Nj,

where Nj = [1, 2j1sP |j|] ∩ Z. We also write Nj = |Nj|.
Suppose that for every x, y ∈ M with x 6= y one has ||γj(x) − γj(y)|| > δj for

some j with 1 ≤ |j| ≤ k − 1. We then have

∑

m∈M
|g(m,β)|2s ≤

∑

γ∈Γ

∣∣∣∣∣
∑

n∈N
a(n)e(γ · n)

∣∣∣∣∣

2

, (5.3)

where

a(n) =
∑′

x1,...,xs

e


 ∑

|i|=k

αi(xi
1 + · · ·+ xi

s) + β(x11 + · · ·+ xs1)


 ,

and where
∑′ denotes the summation over x1, . . . ,xs ∈ [1, 2P ]×[1, P ]d−1 satisfying

the system
xj

1 + · · ·+ xj
s = nj (1 ≤ |j| ≤ k − 1).

Notice also that one has ∑

n∈N
|a(n)|2 ≤ Js,k−1,d(2P ). (5.4)

Then by a q-dimensional version of the large sieve inequality (see for example
Vaughan [9], Lemma 5.3), one deduces from (5.3) and (5.4) that

∑

m∈M
|g(m,β)|2s ¿


 ∏

1≤|j|≤k−1

(Nj + δ−1
j )


Js,k−1,d(2P ). (5.5)

It therefore remains to analyze the spacing of the γj(m) defined by (5.2) as m
runs through a suitably chosen set M. For this, we need to make use of rational
approximations, so let us fix j as in the statement of the theorem with 2 ≤ |j| ≤ k.
Without loss of generality, we may suppose that j1 ≥ 1, and we temporarily adopt
the notation J = j2 + · · · + jd. We also fix x, y ∈ M with x 6= y. When 0 ≤ j ≤
k − 1− J , we write γj(m) = γj,j2,...,jd

(m) and define

τj = (k − J)!(γj(x)− γj(y))

= (k − J)!
k−J∑

h=j

(
h

j

)
((−x)h−j − (−y)h−j)αh,j2,...,jd

=
k−1−J∑

h=1

βhahj ,

where ahj = 0 if h < j,

ahj =
(k − J)!
h + 1

(
h + 1

j

)
(−x)h+1−j − (−y)h+1−j

y − x
(j ≤ h ≤ k − 1− J),



24 scott t. parsell

and

βh = αh+1,j2,...,jd
(h + 1)(y − x).

Thus, by applying the argument leading to inequality (5.33) of Vaughan [9], with
k replaced by k − J , we may conclude that

||((k − J)!)k−Jαj,j2,...,jd
(x− y)|| ¿

k−1−J∑

h=j−1

||γh(x)− γh(y)||Ph−j+1

for all j with 1 ≤ j ≤ k − J . In particular, on returning to our original notation, it
follows that

||(k!)kαj(x− y)|| ¿ ||γh(x)− γh(y)||Ph1−j1+1 (5.6)

for some h = (h1, j2, . . . , jd) with 1 ≤ |j| − 1 ≤ h1 + j2 + · · ·+ jd ≤ k − 1. Here our
assumption that j1 ≥ 1 ensures that h1 ≥ 0. Now suppose that a ∈ Z and q ∈ N
are coprime integers with |qαj− a| ≤ q−1, and write N = min(P, q). Fix x ∈ [1, N ].
If y ∈ [1, N ] satisfies

||(k!)kαj(x− y)|| ≤ P 1−|j|,

then by the triangle inequality one has

||(k!)ka(x− y)/q|| ≤ P 1−|j| + (k!)kNq−2.

Hence the number of choices for the residue class modulo q of (k!)ky is at most
2qP 1−|j| + 2(k!)kNq−1 + 1, so the number of possibilities for y ∈ [1, N ] is at most

R = ((k!)kNq−1 + 1)(2qP 1−|j| + 2(k!)kNq−1 + 1).

It follows that there exists a setM⊆ [1, N ]∩Z with |M| = M ≥ N/(R+1) with the
property that for any x, y ∈M with x 6= y one has ||(k!)kαj(x−y)|| > P 1−|j|. In this
case, (5.6) implies that ||γh(x)− γh(y)|| À P−|h| for some h with 1 ≤ |h| ≤ k − 1.
Thus we can take δj = P−|j| in (5.5) and combine this with (5.1) to obtain

|f(α)|2s ¿ M−1(log P )2sPK−LJs,k−1,d(2P ) ¿ P 2sd+∆M−1(log P )2s,

where K and L are as in (1.10) and (1.14). Finally, we note that

M−1 ¿ R/N ¿ N−1(qP 1−|j| + Nq−1 + 1) ¿ qP−|j| + P−1 + q−1,

from which the theorem now follows.

We now use Theorem 5.1 to show that, when |f(α)| is large, each coefficient αj

with 2 ≤ |j| ≤ k has a good rational approximation such that the least common
multiple of the denominators is relatively small. The following theorem is modeled
on Theorem 4.3 of Baker [2].

Theorem 5.2. Let s be a positive integer, and let ∆ = ∆s,k−1,d be an ad-
missible exponent for (s, k − 1, d). Further suppose that |f(α)| À A, where Q =
P∆(P dA−1)2s satisfies Q ¿ P 1−2ε for some ε > 0. Then there exist integers aj

and natural numbers qj, with (qj, aj) = 1, such that

|qjαj − aj| ≤ QP−|j|+ε (2 ≤ |j| ≤ k).

Moreover, the least common multiple q0 of the numbers qj satisfies q0 ¿ Q(log P )2s.
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Proof. For each j with 2 ≤ |j| ≤ k, we may apply Dirichlet’s Theorem to obtain
coprime integers qj and aj with

1 ≤ qj ≤ Q−1P |j|−ε and |qjαj − aj| ≤ QP−|j|+ε. (5.7)

Then by Theorem 5.1, we have

A2s ¿ |f(α)|2s ¿ P 2sd+∆(qjP−|j| + P−1 + q−1
j )(log P )2s

for each such j. Thus we have

Q−1(log P )−2s ¿ qjP
−|j| + P−1 + q−1

j ¿ Q−1P−ε + q−1
j ,

and it follows that
qj ¿ Q(log P )2s ¿ P 1−ε. (5.8)

Now fix an integer x ∈ [1, P ], and suppose there is an integer y ∈ [1, P ] such that

||(k!)kαj(x− y)|| ≤ P 1−|j| (2 ≤ |j| ≤ k).

Then by (5.7), (5.8), and the triangle inequality, one has

||(k!)kaj(x− y)/qj|| ≤ P 1−|j| + (k!)kq−1
j QP 1−|j|+ε < q−1

j ,

and it follows that qj divides (k!)kaj(x− y) for each j. Since (qj, aj) = 1, we deduce
that q0 divides (k!)k(x − y), and hence there are at most R = (k!)kPq−1

0 + 1
possible choices for y. Thus there is a set of integers M ⊆ [1, P ] such that |M| =
M ≥ P/(R + 1) with the property that, whenever x, y ∈ M with x 6= y, one has
||(k!)kαj(x−y)|| > P 1−|j| for some j with 2 ≤ |j| ≤ k. Now recall the numbers γj(m)
defined by (5.2). We may apply the relation (5.6) to deduce that, whenever x, y ∈M
with x 6= y, there exists h with 1 ≤ |h| ≤ k−1 such that ||γh(x)−γh(y)|| À P−|h|.
Therefore, by repeating the argument leading to (5.5) in the proof of Theorem 5.1,
we may conclude that

A2s ¿ |f(α)|2s ¿ M−1(log P )2sP 2sd+∆,

and thus

A2s ¿ (q−1
0 + P−1)(log P )2sQA2s ¿ q−1

0 (log P )2sQA2s + A2sP−ε,

whence q0 ¿ Q(log P )2s, as required.

Theorem 5.2 gives us all the information we need to handle the minor arcs for the
problem of obtaining an asymptotic formula for Ns,k,d(P ), since the system (1.2)
contains only equations of degree k. In order to obtain the asymptotic formula for
Js,k,d(P ), however, we need information about rational approximations to the the αj

with |j| = 1 when |f(α)| is large, which is not provided by Theorem 5.2. In order to
obtain such information, we establish a “final coefficient lemma” analogous to that
of Baker [2], Lemma 4.6, and this requires us to input some major arc information.
We define

S(q,a) =
∑

x∈[1,q]d

e


q−1

∑

1≤|i|≤k

aixi


 , v(β) =

∫

[0,P ]d
e


 ∑

1≤|i|≤k

βiγ
i


 dγ,

and
V (α; q,a) = q−dS(q,a)v(α− a/q).

The following simple lemma suffices for our purposes.
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Lemma 5.3. One has

f(α)− V (α; q,a) ¿ P d−1


q +

∑

1≤|i|≤k

|qαi − ai|P |i|

 .

Proof. We may clearly suppose that q ≤ P , since otherwise the result is trivial.
For each i with 1 ≤ |i| ≤ k, we write βi = αi − ai/q. Sorting into arithmetic
progressions modulo q, we obtain

f(α) =
∑

r∈[1,q]d

e


q−1

∑

1≤|i|≤k

airi


∑

j

e


 ∑

1≤|i|≤k

βi(qj + r)i


 ,

where the second summation is over all j satisfying 0 ≤ jl ≤ (P−rl)/q for 1 ≤ l ≤ d.
By making the change of variables γ = qz + r, we find that

v(β) = qd

∫

Ar

e


 ∑

1≤|i|≤k

βi(qz + r)i


 dz,

where
Ar = {z ∈ Rd : −rl/q ≤ zl ≤ (P − rl)/q}.

It follows that

f(α)− V (α; q,a) =
∑

r∈[1,q]d

e


q−1

∑

1≤|i|≤k

airi





∑

j

∫

Uj

H(z; j, r) dz + O
(
(P/q)d−1

)

 ,

where

H(z; j, r) = e


 ∑

1≤|i|≤k

βi(qj + r)i


− e


 ∑

1≤|i|≤k

βi(qz + r)i




and
Uj = [j1, j1 + 1]× · · · × [jd, jd + 1].

An application of the mean value theorem with respect to the variable z1 shows
that, for z ∈ Uj, one has

H(z; j, r) ¿
∑

1≤|i|≤k

|βi|qi1(qz1 + r1)i1−1 · · · (qzd + rd)id ¿ q
∑

1≤|i|≤k

|βi|P |i|−1,

and the theorem now follows by making trivial estimates.

We note that a van der Corput analysis along the lines of Baker [2], Lemma
4.4, may be applied to give a better error term for small values of q, provided that
|βi| ≤ (2rkq)−1P 1−|i| for each i. Such improvements do not strengthen our final
conclusions, however, and we actually find Lemma 5.3 to be more convenient for
our purposes.

Before stating our final coefficient lemma, we mention two important estimates.
First of all, by Lemma II.2 of [1], one has

v(β) ¿ P d

(
1 +

∑

1≤|i|≤k

|βi|P |i|
)−1/k

. (5.9)
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Secondly, it follows from Lemma II.8 of [1] that, whenever (q,a) = 1, one has

S(q,a) ¿ qd−1/k+ε (5.10)

for every ε > 0. These bounds will be used frequently throughout the remainder of
our analysis. We are now ready to state the final coefficient lemma.

Lemma 5.4. Suppose that |f(α)| ≥ A ≥ P d−σ+ε for some ε > 0, where σ−1 >
d + 1. Further, write X = P 1−(d+1)σ and Y = (P dA−1)k+ε, and suppose that there
exist integers vj and w with

1 ≤ w ¿ X and |wαj − vj| ¿ XP−|j| (2 ≤ |j| ≤ k).

Then there exist integers aj and q, with (q,a) = 1, such that

1 ≤ q ¿ Y and |qαj − aj| ¿ Y P−|j| (1 ≤ |j| ≤ k).

Proof. By Dirichlet’s Theorem on simultaneous approximation, we can find an
integer t with 1 ≤ t ≤ P σd and integers aj such that |twαj − aj| ≤ P−σ for each j
with |j| = 1. Now put q = tw, and write aj = tvj when 2 ≤ |j| ≤ k. Then we have
q ¿ P 1−σ and

|qαj − aj| = t|wαj − vj| ¿ P 1−σ−|j|.

Furthermore, we may divide out common factors to ensure that (q,a) = 1 while
preserving the latter two inequalities. Thus by Lemma 5.3 we have

P d−σ+ε ≤ A ≤ |f(α)| = |V (α; q,a)|+ O(P d−σ),

and it follows that A ¿ |V (α; q, a)|. Thus by (5.9) and (5.10), we have

A ¿ qτP d

(
q +

∑

1≤|j|≤k

|qαj − aj|P |j|
)−1/k

,

where τ = ε/(2k2) < 1/(2k). It follows that

q +
∑

1≤|j|≤k

|qαj − aj|P |j| ¿ (qτP dA−1)k ¿ q1/2(P dA−1)k.

In particular, this shows that q ¿ (P dA−1)2k and hence that

q +
∑

1≤|j|≤k

|qαj − aj|P |j| ¿ (P dA−1)k+ε,

as required.

We are now in a position to state the main theorem of this section.

Theorem 5.5. Suppose that |f(α)| ≥ A ≥ P d−σ+ε for some ε > 0, where

σ−1 ≥ 2rk(log k + 4
3 log r + 2 log log k + 3d + 6),

and write Y = (P dA−1)k+ε. Then there are integers aj and q, with (q,a) = 1,
satisfying

1 ≤ q ¿ Y and |qαj − aj| ¿ Y P−|j| (1 ≤ |j| ≤ k).
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Proof. First of all, by applying Theorem 1.1 with

s = drk( 1
2 log k + 2

3 log r + log log k + 2)e,
we find that ∆ = (log k)−1 is an admissible exponent for (s, k, d). Moreover, for fixed
s and d, the admissible exponent given by Theorem 1.1 is an increasing function
of k, so it follows that ∆ is also admissible for (s, k − 1, d). A simple calculation
reveals that

σ(4s + d + 1) < 1− 2∆

whenever k is sufficiently large, and thus

(P dA−1)4s ¿ P 4sσ−2ε ¿ XP−2∆−2ε,

where X = P 1−(d+1)σ. Then by Theorem 5.2, we find that there is an integer q0

satisfying
1 ≤ q0 ¿ P∆(P dA−1)2s(log P )2s ¿ X1/2

and
||q0αj|| ≤ q0||qjαj|| ¿ P 2∆(P dA−1)4s(log P )2sP−|j|+ε ¿ XP−|j|

for all j with 2 ≤ |j| ≤ k. Here the integers qj are as in the statement of Theorem
5.2. We may therefore apply Lemma 5.4 to complete the proof.

Theorem 1.2 now follows as an easy corollary. Theorem 5.5 is slightly more in-
formative, however, particularly in the situation where |f(α)| À P d, which arises
in the current method for studying diophantine inequalities. In such applications,
the fact that q is bounded by a constant is critical.

6. The asymptotic formulas

In this section we prove Theorem 1.3 by applying the Hardy-Littlewood method.
Essentially the same argument may be applied to deduce Theorem 1.4, and we
provide only a sketch of the latter proof.

First recall that

Js,k,d(P ) =
∫

Tr

|f(α)|2sdα.

We let
M(q,a) = {α ∈ Tr : |qαi − ai| ≤ P 1/2−|i|, 1 ≤ |i| ≤ k} (6.1)

and define the set of major arcs M to be the union of all M(q,a) with 0 ≤ ai ≤
q ≤ P 1/2 and (q,a) = 1. Further, let m = Tr \M denote the minor arcs.

Theorem 6.1. Let s1 be as in (1.13), and suppose that s ≥ s1. Then there
exists δ = δ(k, d) > 0 such that

∫

m

|f(α)|2sdα ¿ P 2sd−K−δ.

Proof. Write s = t + u, where t and u are parameters at our disposal. We have∫

m

|f(α)|2sdα ≤ sup
α∈m

|f(α)|2t

∫

Tr

|f(α)|2udα.
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By applying Theorem 1.1, we find that ∆u = (log k)−1 is an admissible exponent
when

u = drk( 2
3 log r + 1

2 log k + log log k + 2)e. (6.2)

Now suppose that |f(α)| ≥ P d−σ+ε, where σ−1 = 8
3rk(d + 1) log k ≥ 8

3rk log rk.
Then we have kσ ≤ 1/2, so Theorem 1.2 implies that α ∈ M. Thus we have

sup
α∈m

|f(α)| ¿ P d−σ+ε

for every ε > 0. It follows that∫

m

|f(α)|2sdα ¿ P 2sd−K−2tσ+∆u+ε,

and by taking t > 4
3rk(d + 1) we find that 2tσ > ∆u. The proof is now completed

by choosing ε sufficiently small in terms of k and d.

We now write V (α) = V (α; q,a) when α ∈ M(q,a) ⊆ M and define V (α) = 0
otherwise. It follows immediately from (6.1) and Lemma 5.3 that

f(α)− V (α) ¿ P d−1/2 (6.3)

whenever α ∈ M. Moreover, one has

meas(M) ¿ P (r+1)/2−K ,

and thus∫

M

(|f(α)|2s − |V (α)|2s) dα ¿ P 2d−1/2

∫

M

|V (α)|2s−2dα + P 2sd−K−ν , (6.4)

where ν = s− 1
2 (r + 1). We are now in a position to handle the major arcs.

Theorem 6.2. Whenever s > 1
2k(r + 1) + 1, one has

∫

M

|f(α)|2sdα = JSP 2sd−K + O(P 2sd−K−δ),

for some δ = δ(k, d) > 0, where

J =
∫

Rr

∫

[0,1]2sd

e


 ∑

1≤|i|≤k

βi(γi
1 + · · ·+ γi

s − γi
s+1 − · · · − γi

2s)


 dγ dβ

and

S =
∞∑

q=1

∑

a∈[1,q]r

(q,a)=1

|q−dS(q,a)|2s.

Proof. We have∫

M

|V (α)|2sdα =
∑

q≤P 1/2

∑

a∈[1,q]r

(q,a)=1

|q−dS(q,a)|2s

∫

B(q)

|v(β)|2sdβ,

where
B(q) =

∏

1≤|i|≤k

[−q−1P 1/2−|i|, q−1P 1/2−|i|].
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After two changes of variable, we find that
∫

B(q)

|v(β)|2sdβ = P 2sd−KJ (q, P ),

where

J (q, P ) =
∫

B′(q)

∫

[0,1]2sd

e


 ∑

1≤|i|≤k

βi(γi
1 + · · ·+ γi

s − γi
s+1 − · · · − γi

2s)


 dγ dβ

and B′(q) = [−q−1P 1/2, q−1P 1/2]r. Applying (5.9) with P = 1 and using the in-
equality

(1 + |β1|+ · · ·+ |βr|)r ≥ (1 + |β1|) · · · (1 + |βr|)
gives

J − J (q, P ) ¿
∫∞
q−1P 1/2

(1 + β)−2s/rkdβ ¿ (q−1P 1/2)1−2s/rk.

Combining this with (5.10), we obtain
∫

M

|V (α)|2sdα = P 2sd−K
∑

q≤P 1/2

∑

a∈[1,q]r

(q,a)=1

|q−dS(q,a)|2sJ (q, P )

= P 2sd−K


J

∑

q≤P 1/2

∑

a∈[1,q]r

(q,a)=1

|q−dS(q,a)|2s + E(P )


 ,

where

E(P ) ¿ P 1/2−s/rk
∑

q≤P 1/2

qr−2s/k−1+2s/rk+ε ¿ P−σ

for some σ > 0, since s > 1
2k(r + 1). In view of (5.10), this lower bound for s also

ensures that ∑

q≤P 1/2

∑

a∈[1,q]r

(q,a)=1

|q−dS(q,a)|2s = S + O(P−τ )

for some τ > 0, and we therefore have
∫

M

|V (α)|2sdα = J (S + O(P−δ))P 2sd−K , (6.5)

where we have set δ = min(σ, τ). Moreover, since s − 1 > 1
2k(r + 1), we see that

(6.5) also holds with s replaced by s − 1. The theorem now follows on recalling
(6.4), since (5.9) implies that J ¿ 1.

The proof of Theorem 1.3 is now completed by combining Theorems 6.1 and 6.2
and noting that, in view of (1.9), one has JS > 0.

If one is prepared to suppose the existence of non-singular real and p-adic so-
lutions to the system (1.2), then the methods illustrated above can be used to
establish an asymptotic formula for Ns,k,d(P ) whenever s ≥ 2s1, as claimed in the
statement of Theorem 1.4. We provide only a brief sketch of the argument. First of
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all, one has

Ns,k,d(P ) =
∫

T`




s∏

j=1

fj(α)


 dα, (6.6)

where we have written ` =
(
k+d−1

k

)
for the number of equations in (1.2), and where

fj(α) =
∑

x∈[−P,P ]d

e


 ∑

|i|=k

cjαixi


 .

We define M(q,a) as in (6.1), except that the condition 1 ≤ |i| ≤ k is replaced by
|i| = k, and we again take M to be the union of the M(q,a) with 0 ≤ ai ≤ q ≤ P 1/2

and (q,a) = 1. Next we write s = t + 2u, where t > 8
3rk(d + 1) and u is as in (6.2).

After applying Hölder’s inequality and making a change of variable, we may apply
(1.15) to conclude as in the proof of Theorem 6.1 that the minor arc contribution
to the integral (6.6) is of order at most P sd−L−ν for some ν > 0.

Furthermore, by repeating the argument of the proof of Theorem 6.2, one finds
that

∫

M




s∏

j=1

fj(α)


 dα = J1S1P

sd−L + O(P sd−L−ν),

for some ν > 0, where

J1 =
∫

R`

∫

[−1,1]sd

e


 ∑

|i|=k

βi(c1γ
i
1 + · · ·+ csγ

i
s)


 dγ dβ

and

S1 =
∞∑

q=1

∑

a∈[1,q]`

(q,a)=1

s∏

j=1

(
q−dS(q, cja)

)
.

To show that J1 > 0, one does some analysis in a neighborhood of the non-singular
real solution as in the argument of [8], Lemma 7.4, for example. To show that
S1 > 0, one makes use of the non-singular p-adic solutions within a Hensel’s lemma-
type argument (see for instance [7], Lemmas 9.6–9.9).
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