MAT 261—Exam \#3-4/17/14

Name:
Calculators are not permitted. Show all of your work using correct mathematical notation.

1. (15 points) Consider the integral $\int_{0}^{6} \int_{0}^{4}(x+2 y) d y d x$.
(a) Find the Riemann sum approximation $S_{2,2}$ to the integral, using 4 rectangles with $\Delta x=3$ and $\Delta y=2$ and the lower left vertices as sample points.
(b) Find the exact value of the integral.
2. (15 points) Find the average value of the function $f(x, y, z)=\frac{e^{2 z}}{(x+3 y)^{2}}$ over the box $[1,5] \times[0,2] \times[0,1]$.
3. (15 points) Evaluate the integral $\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(\pi y^{3}\right) d y d x$ by reversing the order of integration. Include a sketch of the domain.
4. (15 points) Evaluate the integral $\int_{0}^{2} \int_{2}^{\sqrt{8-x^{2}}}\left(x^{2}+y^{2}\right)^{-3 / 2} d y d x$ by changing to polar coordinates. Include a sketch of the domain.
5. (15 points) An object occupying the hemisphere defined by $x^{2}+y^{2}+z^{2} \leqslant 4$ and $z \geqslant 0$ has mass density $\delta(x, y, z)=3 z^{2} \mathrm{~kg}$ per cubic unit. Find the total mass of the object.
6. (15 points) Consider the integral $\iint_{\mathcal{D}}(y-x)^{5} d A$, where \mathcal{D} is the parallelogram in the $x y$-plane spanned by the vectors $\langle 4,5\rangle$ and $\langle 1,3\rangle$. Use the transformation

$$
\Phi(u, v)=(4 u+v, 5 u+3 v)
$$

to evaluate the integral.
7. (10 points) Evaluate the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}$ for the vector field $\mathbf{F}=\left\langle x^{2}, x y\right\rangle$ and the curve \mathcal{C} parametrized by $\mathbf{c}(t)=\left\langle t^{3}, 2 t\right\rangle$ on the interval $0 \leqslant t \leqslant 1$.

