
Highly Efficient and Exact Method for Parallelization of
Grid-Based Algorithms and its Implementation in DelPhi

Chuan Li,[a] Lin Li,[a] Jie Zhang,[a,b] and Emil Alexov*[a]

The Gauss–Seidel (GS) method is a standard iterative

numerical method widely used to solve a system of equations

and, in general, is more efficient comparing to other iterative

methods, such as the Jacobi method. However, standard

implementation of the GS method restricts its utilization in

parallel computing due to its requirement of using updated

neighboring values (i.e., in current iteration) as soon as they

are available. Here, we report an efficient and exact (not

requiring assumptions) method to parallelize iterations and to

reduce the computational time as a linear/nearly linear

function of the number of processes or computing units. In

contrast to other existing solutions, our method does not

require any assumptions and is equally applicable for solving

linear and nonlinear equations. This approach is implemented

in the DelPhi program, which is a finite difference Poisson–

Boltzmann equation solver to model electrostatics in

molecular biology. This development makes the iterative

procedure on obtaining the electrostatic potential distribution

in the parallelized DelPhi several folds faster than that in the

serial code. Further, we demonstrate the advantages of the

new parallelized DelPhi by computing the electrostatic

potential and the corresponding energies of large

supramolecular structures. VC 2012 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23033

Introduction

The ability to calculate electrostatic forces and energies is critical

in modeling biological molecules and nano-objects immersed in

water and salt phase or another medium due to the fact that bi-

ological macromolecules are comprised of charged atoms. Their

interactions and interactions with water and salt contribute to

the structure, function, and interactions of biomolecules. At the

same time, modeling the electrostatic potential of biological

macromolecules is not trivial, and in a continuum case, requires

solving the Poisson–Boltzmann equation (PBE)[1]

r � ½eðxÞr/ðxÞ� � jðxÞ2 sinh½/ðxÞ� ¼ �4pqðxÞ; (1)

which is a second-order nonlinear elliptic partial differential

equation discussed extensively in Ref. [2]. Here, /(x) is the

electrostatic potential, e(x) is the spatial dielectric function, j(x)

is a modified Debye–Huckel parameter, and q(x) is the charge

distribution function.

The PBE does not have analytical solutions for irregularly

shaped objects, and because of that, the solution must be

obtained numerically. Numerous PBE solvers (PBES) have been

designed and developed independently to use various mathe-

matical methods to solve the PBE numerically. A short list

includes AMBER,[3–6] CHARMM,[7] ZAP,[8] MEAD,[9] UHBD,[10]

AFMPB,[11] matched interface and boundary-based poisson boltz-

mann equation software package (MIBPB),[12,13] ACG-based

PBES,[14] Jaguar,[15] APBS, [16,17] and DelPhi.[1,18] Among these

PBES, three popular implementations deserve specific attention in

the light of current work. The APBS is a popular multigrid finite

difference and adaptive finite element PBES developed by Dr. N.

Baker and his colleagues and is aimed at providing force estimates

and modeling large biomolecules and assemblages and pKa cal-

culations. Another popular poisson boltzmann (PB) solver is

MIBPB,[12,13,19–22] developed by Wei and coworkers which uses

interface technique to assure potential and flux continuity at the

interface biomolecule and solvent. Because of this and Krylov

subspace technique[12,19–22] implementation, the MIBPB was

demonstrated to be very robust PBES achieving second-order

convergence for solving linear PBE.[13] The third popular solver is

DelPhi, developed in Honig and coworkers laboratory,[1,18] which

adopts the Gauss–Seidel (GS) method, combined with the suc-

cessive over-relaxation (SOR) method which estimates the best

relaxation parameter at run time [23] to solve both linear and

nonlinear PBES. DelPhi has many unique features, such as abil-

ities of modeling geometric objects (spheres, parallelepipeds,

cones, and cylinders) and assigning multiple dielectric regions

and charge distributions, and capabilities of allowing users to

specify different types of salts and boundary conditions, as well

as various output maps.

However, existing methods implemented in serial PBES are

only suitable for electrostatic calculations of relatively small

biomolecular systems due to time constraints. Nowadays,

problems arising from computational biology are complex and

usually of nano scale resulting in systems consisting of large

[a] C. Li, L. Li, J. Zhang, E. Alexov

Computational Biophysics and Bioinformatics, Department of Physics and

Astronomy, Kinard Laboratory Building, Clemson University, SC 29634

E-mail: ealexov@clemson.edu

[b] J. Zhang

Department of Computer Science, Clemson University, Clemson, South

Carolina 29642

Contract/grant sponsor: NIGMS, NIH; Contract/grant number: R01

GM093937.

VC 2012 Wiley Periodicals, Inc.

1960 Journal of Computational Chemistry 2012, 33, 1960–1966 WWW.CHEMISTRYVIEWS.COM

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

http://chemistryviews.com/
http://chemistryviews.com/
http://chemistryviews.com/
http://c-chem.org/


amounts of charged atoms and tens of thousands of, even

millions, mesh points. The size and complexity of these prob-

lems make parallelization of current serial PBES highly desired

to improve their performance to solve the problems in rea-

sonable time. For example, APBS was parallelized by a ‘‘paral-

lel focusing’’ method based on the (spatial) domain decompo-

sition method, together with standard focusing techniques.

The results of parallel solution of the PBE for supramolecular

structures, such as microtubule and ribosome structures, are

presented in Ref. [17]. It should be mentioned that the solu-

tion obtained by this parallel method may not be identical to

that obtained by the serial calculation, because to perform

calculations in parallel on subsets of global mesh, additional

values at boundaries of subsets must be, for instance, inter-

polated from the solution on a much coarser mesh in the

first place.

In contrast to the (spatial) domain decomposition approach

implemented in APBS, this article reports a novel approach to

parallelize the GS method and its application to create a paral-

lelized DelPhi. The implementation was facilitated due to the

techniques already implemented in the serial DelPhi, such as

the ‘‘checkerboard’’ ordering (also known as the ‘‘red-black’’

ordering[24]) and contiguous memory mapping,[1] to fulfill the

GS method, and latter, the SOR method. In addition, the paral-

lelization was possible because of the message passing inter-

face version 1.0 (MPI-1), which allows the high-performance

message-passing operations available for the advance distrib-

uted-memory communication environment supplied with par-

allel computers/clusters. Later on, MPI-2 was released to

include new features such as parallel I/O, dynamic process

management, and remote memory operations.[25] With the aid

of powerful MPI libraries, we developed an efficient and exact

method to parallelize the serial DelPhi (from the algorithmic

point of view) to achieve linear/nearly linear speedup of its

performance without compromising the accuracy and without

introducing any assumptions. Although the approach was

implemented in DelPhi, the very same parallelization tech-

nique can be translated and used by other software to imple-

ment/parallelize GS/SOR methods and other grid-based

algorithms.

This article is organized as follows: (a) the techniques of

implementing GS/SOR methods reported in Ref. [1] are

described in the next section. Then, (b) parallel technique

using MPI-2 remote memory operations is reported, and (c)

implementation results and performance analysis on two

examples of large supramolecular structures are demonstrated.

Efficient Implementation Techniques of the GS
Method

In this section, we briefly describe the numerical methods and

the techniques implemented in the serial DelPhi code. More

details can be found in Supporting Information and original

papers.[1,18,26]

Consider a three-dimensional (3D) cubical domain X. We dis-

cretize X into L grids per side with uniform grid size h. The total

number of grid points is N ¼ L � L �L. Let K0(x0, y0, z0) be an ar-

bitrary grid point away from the boundary of X. Applying finite

difference formulation yields an iteration equation for Eq. (1):

/0 ¼
P6

i¼1 ei/i þ 4pq0=hP6
i¼1 ei þ ðjhÞ2ðsinhð/0ÞÞ=/0

; (2)

where /0 and q0 are the potential and charge assigned to K0, /i,

i ¼ 1, …, 6 are potentials at six nearest neighboring grids of K0,

and ei, i ¼ 1, …, 6 are the dielectric constants (taking value ei ¼
eout outside the protein and ei ¼ ein inside the protein), at mid-

points of K0 and its nearest neighbors (see Supporting Informa-

tion for details). Equation (2) can be rewritten in matrix form as

U ¼ TUþ Q; (3)

where T is the coefficient matrix and U and Q are column

vectors.

Given appropriate boundary conditions at the edge of X
and an initial guess for the potential at each grid point (usu-

ally zero for convenience), we may solve Eq. (3) iteratively

using numerical methods such as Jacobi, GS, or SOR methods.

In the case of serial calculations, the GS method is, in general,

superior to the Jacobi method in the sense that it converges

faster than the Jacobi method. The gain of convergence rate

comes from the fact that the GS method uses latest updated

potentials at neighboring points in current iteration, instead of

values obtained in the previous iteration as in the Jacobi

method. However, without special treatment, the requirement

of using latest updated neighboring values makes the GS

method less favorable to parallel computing due to the fact

that calculations at one point cannot start before the comple-

tion of calculations at its neighbors. To efficiently parallelize

the GS method, an implementation technique, called the

‘‘checkerboard’’ ordering,[1] which has been implemented in se-

rial DelPhi, will be discussed in the following section.

The ‘‘checkerboard’’ ordering

Solving Eq. (3) iteratively requires construct mapping to convert

potentials and charges at 3D grid points to column vectors U
and Q. One common mapping, alternating index in x-direction

first, followed by indices in y- and z-direction, is given by

w ¼ x þ L� ðy � 1Þ þ L2 � ðz � 1Þ; (4)

which maps the potential and charge at point P(x,y,z) to U(x),

and Q(w), respectively.

The associated coefficient matrix T is determined by the

order in which the grid points are mapped. However, it has

been pointed out in Ref. [27] that this mapping does not

affect the spectral radius of matrix T. That is, the convergence

rate of the iteration method is independent of the mapping

order, which allows us to reorder the components of U and Q,

and reconstruct associated matrix T in desired fashion without

losing the overall convergence rate of the iteration method.

Another important observation on the grid-to-vector map-

ping is that each grid point P(x,y,z) can be assigned as odd or

even by the sum of its grid coordinates, sum ¼ x þ y þ z.[1]

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2012, 33, 1960–1966 1961

http://c-chem.org/
http://onlinelibrary.wiley.com/


We call P an even point if sum is even, and P an odd point if

sum is odd. The six nearest neighbors of P are of opposite na-

ture, that is, every even point is surrounded by odd points

and vice versa because the sum of their coordinates only differ

by one. As shown in Eq. (2), updating of the potential at any

point only depends on the potentials at its six nearest neigh-

bors, we see that even is updated by surrounding odds, and

odd is updated by surrounding evens. Moreover, provided L

an odd number, index w obtained by Eq. (4) is of the same

even/odd nature as sum which leads to the following reorgan-

ization of U and Q simply by sum

U ¼ Ueven

Uodd

� �
; Q ¼ Qeven

Qodd

� �
; (5)

where Ueven and Qeven are potentials and charges at even

points, and Uodd and Qodd are those at odd points. The corre-

sponding coefficient matrix T is then of the form

T ¼ 0 Todd

Teven 0

� �
; (6)

such that Todd is the submatrix which updates Ueven with Uodd,

and in turn, Teven updates Uodd with newly obtained Ueven.

Equation (3) is thereby equivalent to

Ueven ¼ ToddUodd þ Qeven

Uodd ¼ TevenUeven þ Qodd

�
: (7)

Equation (7) allows the GS method to be implemented in

Jacobi’s fashion and makes it suitable for parallelization.

Contiguous memory mapping

Before we move to the next section introducing techniques

on how to parallelize the GS scheme effectively, one more

implementation technique, namely contiguous memory map-

ping, needs to be described.

It is noticed[1] that the performance of the ‘‘checkerboard’’

ordering implementing the GS method is slowed down using

a logical operation (‘‘IF’’ statement) in the most inner loop of

the algorithm to separate the process of updating U into odd

and even cycles. Considering a case such that U is composed

of millions of points and the numerical algorithm requires hun-

dreds of iterations to converge, the cost of this logical opera-

tion is unaffordable. Therefore, it was suggested in Ref. [1] that

the best way to efficiently code the ordering is to map the

odd and even points separately into two contiguous memory/

arrays, that is, Uodd and Ueven. This leads to a more complex

coding of the algorithm but avoids branching the inner

loop.[1]

Discussions of Parallelization Techniques and
Parallel Algorithm

After implementing the techniques described earlier, paralleliz-

ing Eq. (7) of the GS method is conceptually straightforward:

provided Ncpu processes or computing units (CPUs) at our dis-

posal, we divide Uodd and Ueven evenly into Ncpu segments.

Each pair of segments of Uodd and Ueven is given to one

CPU for updating. To reproduce values obtained from serial

calculations without imposing additional boundary condi-

tions, additional memory is allocated to synchronize values

near both ends of the segments. Synchronization takes

place right after the segments of Uodd and Ueven are

updated locally.

Implementing the above idea effectively requires network

communication to be reduced. An efficient algorithm must

minimize the ratio between the amount of data to be

synchronized and the amount of data to be computed locally

per CPU, that is, the CPU must spend more time computing

than communicating.

Details of the parallelization

Notice U is of the length L3 and therefore, segments of Uodd

and Ueven to be updated locally per CPU are of the same

length L3/(2NCPU). Let p0(x0, y0, z0) be an even point and

the potential at p0 is mapped to Ueven(w0)

with w0 ¼ x0þLðy0�1ÞþL2ðz0�1Þþ1
2 , the potentials at six nearest

neighbors of p0 are then mapped to six entries of Uodd shown

in the second column of Table 1. Similarly, when p0 is odd and

the potential at p0 is mapped to Uodd(w0) with

w0 ¼ x0þLðy0�1ÞþL2ðz0�1Þ
2 , the potentials at its six neighbors are

shown in the third column of Table 1.

We can see from Table 1 that, on each CPU, at most
L2þ1

2 þ L2�1
2 ¼ L2 elements near the ends of segments of Uodd

and Ueven are required to be synchronized in iterations. There-

fore, the ratio of the number of elements to be exchanged

and the number of elements to be calculated locally is

r ¼ L2=2

L3=ð2NCPUÞ
¼ NCPU

L
: (8)

Equation (8) provides an insight to the speedup, efficiency,

and scalability of the parallel algorithm. For example, small r

(r � 1, or equivalently, NCPU � L) indicates that communica-

tion cost in the parallel computation contributes only a minor

portion of the overhead, assuming cost of network communi-

cation is comparable to that of CPU floating point calculations.

Table 1. Potentials at six nearest neighbor points of p0 in Uodd and

Ueven.

Neighboring

points of p0(x0, y0, z0)

Entries of Uodd

when p0 is even

Entries of Ueven

when p0 is odd

p1(x0 � 1, y0, z0) Uodd(w0 � 1) Ueven(w0)

p2(x0 þ 1, y0, z0) Uodd(w0) Ueven(w0 þ 1)

p3(x0, y0 � 1, z0) Uodd w0 � Lþ1
2

� �
Ueven w0 � L�1

2

� �
p4(x0, y0 þ 1, z0) Uodd w0 þ L�1

2

� �
Ueven w0 þ Lþ1

2

� �
p5(x0, y0, z0 � 1) Uodd w0 � L2þ1

2

� �
Ueven w0 � L2�1

2

� �

p6(x0, y0, z0 þ 1) Uodd w0 þ L2�1
2

� �
Ueven w0 þ L2þ1

2

� �

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

1962 Journal of Computational Chemistry 2012, 33, 1960–1966 WWW.CHEMISTRYVIEWS.COM

http://c-chem.org/
http://chemistryviews.com/
http://chemistryviews.com/
http://chemistryviews.com/


In such cases, linear speedup of the parallel computing is very

likely to be achieved.

Many other factors may affect the performance of the paral-

lelized code. In particular, appropriate MPI communication oper-

ations must be chosen carefully to avoid unwanted delays

because of queue in synchronization. Synchronization across all

processors can be achieved by either blocking or nonblocking

operations provided by MPI. Blocking operations require the

sender to wait for receiving the confirmation from the receiver

before the sender can process to the next operation. In our

case, one processor needs to exchange boundary values with

both neighboring processors on its left and right sides. If block-

ing operations are chosen to use, in the worst scenario, proces-

sor 2 needs to talk to processor 1 and wait for response from

processor 1 before it can talk to processor 3, and so on. In this

case, a communication queue is created and the last processor

communicates the last. It is obviously not efficient. Therefore,

nonblocking operations are more favorable for this application.

Moreover, because the computer cluster is equipped with Myri-

net, on which one-sided operations have potentials to perform

better than two-sided operations, one-sided direct memory

access operations were used in this method.

MPI-2 library provides two communication models: two-sided

communication based on blocking/nonblocking send and receive

operations and one-sided communication allowing direct remote

memory access (DRMA) of a remote process.[28] Two-sided com-

munication requires actions on both sides of sender and receiver.

In contrast, one-sided communication specifies communication

parameters only on the ‘‘requester’’ side (called the origin pro-

cess) and leaves the ‘‘host’’ (called the target process) alone with-

out interrupting its ongoing work during communication. One-

sided communication requires additional operations to create an

area of memory (call a ‘‘window’’) in the target process for the or-

igin process to access before communication takes place.

One-sided communication fits in our requirements very well.

It is more convenient to use and has the potential to perform

better on the networks like InfiniBand and Myrinet, where

one-sided communication is supported natively.[29] One-side

communication requires explicit synchronization to ensure the

completion of communication. Three synchronization mecha-

nisms are provided in MPI-2:[30] the fence synchronization, the

lock/unlock synchronization, and the post-start-complete-wait

synchronization. Among these three synchronization mecha-

nisms, the scope of the post-start-complete-wait synchroniza-

tion can be restricted to only a pair of communicating, which

makes it the best candidate in our scenario: synchronizations

between two successive processes take place at almost the

same time, and moreover, provided the problem size is fixed

[see Eq. (8)], the amount of data to be exchanged between

two processes is of the same no matter how many processes

are allocated.

Parallel algorithm

In the light of above results and discussions, we followed the

Master-Slaves paradigm and developed an efficient and exact

algorithm to parallelize the iterations in the GS method using

MPI-2 one-sided DRMA operations. The algorithm is described

in Table 2 and graphically shown in Figure 1.

Implementation Results and Conclusions

Analyzing the performance of parallel programs requires back-

ground in parallel computing. For readers who are not familiar

with parallel computing, it is suggested to refer to the sup-

porting information for some commonly used quantities, such

as speedup and efficiency, as well as some important theoreti-

cal results, for performance analysis of parallel algorithms.

The numerical experiments reported in this section were

done with parallelized DelPhi (version 5.1, written in FOR-

TRAN95) and performed on two types of computer nodes of the

Palmetto cluster at Clemson University:[31] (I) Computer node

1112-1541 of Sun X6250 with Intel Xeon L5420 at 2.5 GHz x2

processors, 8 cores, 6 MB L2 cache, and 32 GB memory; (II) Com-

puter node 1553-1622 of HP DL 165 G7 with AMD Opteron 6172

at 2.1 GHz x2 processors, 24 cores, 12 MB L2 cache, and 48 GB

memory. Myrinet network (10 GB) is equipped on the Palmetto

cluster. All experiments, except those of serial nonlinear imple-

mentations which require more than 30 GB memory, were per-

formed on the first set of nodes for consistency. Each identical

Table 2. An algorithm for parallelizing iterations in the GS method using MPI-2 DRMA operations.

Step 1: The master CPU assigns 3D points as even and odd according to the sum of its coordinates. An arbitrary grid point P(x,y,z) and its six nearest

neighbors are shaded and shown in Figure 1a. The master CPU maintains Qeven, Qodd, Ueven, and Uodd. Relative positions of p in Ueven and its

neighbors in Uodd are demonstrated in Figure 1b. Qeven, Qodd, Ueven, and Uodd are then divided evenly and distributed to every slave CPU.

Step 2: Each slave CPU allocates contiguous memory for segments of Qeven and Qodd of length L3/(2NCPU), and segments of Ueven and Uodd of length

L3/(2NCPU) þ L2. In Ueven and Uodd, the first and last L2/2 elements (unshaded regions in Fig. 1c) are for receiving updated potentials on the pre-

vious and next CPUs, and, in between (shaded regions in Fig. 1c), L3/(2NCPU) potentials are updated locally on this CPU. The colored regions in

Figure 1c indicate where synchronization takes place.

Step 3: The first (NCPU�1) slave CPUs create two windows, win1 and win2, of size L2 at the right end of Ueven and Uodd by MPI_WIN_CREATE (shown in

Fig. 1d).

Step 4: Slave CPU(i) opens window win2 using MPI_WIN_POST. CPU(iþ1) starts request of DRMA using MPI_WIN_START, copies L2/2 elements in the

shaded red region of Uodd to the unshaded red region of Uodd on CPU(i) by MPI_PUT, brings another L2/2 elements in the shaded blue region

of Uodd on CPU(i) back to the unshaded blue region of Uodd on CPU(iþ1) by MPI_READ, and completes the request by MPI_WIN_COMPLETE.

The whole access epoch is completed after CPU(i) calls MPI_WIN_WAIT, as shown in Figure 1d.

Step 5: Each slave CPU updates the elements of Ueven in the shaded region one by one using Eq. (2), or more efficiency method described in Ref. [1].

Step 6: Follow the same procedures in Steps 4–5 to update Uodd using updated Ueven.

Step 7: Repeat Steps 4–6 until predefined tolerance or the maximal number of iterations is achieved. The computed results are sent back to the master

CPU for reassembling.

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2012, 33, 1960–1966 1963

http://c-chem.org/
http://onlinelibrary.wiley.com/


Figure 2. Performance results and electrostatic properties of 1VSZ. a) Execution (purple) and iteration (red) time for solving the linear PBE, compared to

execution (orange) and iteration (blue) time for solving the nonlinear PBE. b) Speedup (red) and efficiency (purple) achieved by solving the linear PBE, com-

pared to speedup (blue) and efficiency (orange) obtained by solving the nonlinear PBE. c) Resulting electrostatic field. d) Resulting electrostatic potential.

Figure 1. Graphical demonstration of an algorithm for parallelizing the iterations in the GS/SOR method uisng MPI-2 DRMA operations. a) The ‘‘checker-

board’’ ordering. b) Contiguous memory mapping. c) Distribution of Ueven and Uodd to multiple CPUs. d) DRMA to the previous CPU. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]



experiment was repeated five times and the average is reported

here to reduce random fluctuations caused by system workload

and network traffic in real time.

All calculations used the same Amber force field. Scale ¼
2.0 and 70% filling of the box domain were set in the parame-

ter file resulting in the dimensions of the box domain �407 �
407 � 407 Å3 and 815 � 815 � 815 mesh points in total.

The first series of experiments, requiring solving linear and

nonlinear PB equations, were performed on a fraction of the pro-

tein of human adenovirus 1VSZ downloaded from the Protein

Data Bank[32] and protonated by TINKER.[33] The CPU time

achieved by solving the linear and nonlinear PBE as a function of

increasing number of processors is shown in Figure 2a with ver-

tical bars indicating variations of five runs. To compare their per-

formance, log-scale plots of speedup and efficiency are shown

in Figure 2b. The resulting potential and electrostatic field are

plotted by visual molecular dynamics software package[34]and

demonstrated in Figures 2c and 2d.

The next series of experiments were performed on the pro-

tein of adeno-associated virus 3KIC, which has significantly

more atoms (�484,500 atoms in a pdb file of size 25.4 MB)

than those of 1VSZ (�180,574 atoms in a pdb file of size 9.5

MB). The results are presented in Figures 3a–3d.

It should be emphasized that the reported parallelization and

its implementation in DelPhi are exact. No approximations were

made. This is demonstrated by the fact that the calculated

potentials and energies are identical for serial and parallelized

DelPhi (see Supporting Information). The importance of achiev-

ing exact solution stems from the fact that in many biologically

relevant cases, the potential and energy differences are of order

Figure 3. Performance results and electrostatic properties of 3KIC. a) Execution (purple) and iteration (red) time for solving the linear PBE, compared to

execution (orange) and iteration (blue) time for solving the nonlinear PBE. b) Speedup (red) and efficiency (purple) achieved by solving the linear PBE, com-

pared to speedup (blue) and efficiency (orange) obtained by solving the nonlinear PBE. c) Resulting electrostatic field. d) Resulting electrostatic potential.

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2012, 33, 1960–1966 1965

http://c-chem.org/
http://onlinelibrary.wiley.com/


of several kT/e or kT units or even less. Any assumption may

induce an error larger than that, especially if computing large

size systems, and thus to obscure the outcome.

It was shown that the parallelization drastically improves the

speed of calculations, especially in case of solving nonlinear

PBE. The case of 1VSZ was purposely included in the testing,

although the structure represents only part of the capsid, sim-

ply to illustrate a case of highly charged entity with very irreg-

ular (different from sphere) shape. This particular case, at the

limits of our testing, using 100 CPUs resulted in speed up of

63 for solving nonlinear PBE. This illustrates that problems

requiring heavy computations will benefit from parallelization

substantially. Equation (8) provides an efficient formula to esti-

mate the conditions at which the parallel algorithm will be

outperforming the serial one. Obviously, the cases involving

large systems made of protein complexes will be the primary

choice of investigation with the parallel DelPhi. In another

words, the speedup of the parallel algorithm will depend on

the ratio of the CPU time and communication time, as indi-

cated by Eq. (8). With decrease of the size of the system, as

small biomolecules with small mesh, the CPU time will

decrease, making the coefficient ‘‘r’’ in Eq. (8) larger and reduc-

ing the efficiency of the algorithm. Because of that calculations

involving small biomolecules are not expected to take advant-

age of this approach.

Analysis of Figures 2b and 3b reveals another important as-

pect of parallelization in case of solving nonlinear PB. The

speedup is almost linear when running on a small number of

processors. It keeps increasing with the increase of processors

(up to 100 processors in our test) and even shows potential to

increase further because its curve has not reached its peak

and flattened out, as pointed out in the Amdahl’s law (intro-

duced in Supporting Information). The best result we obtained

is a speedup of 63 when running on 100 processors to solve

the nonlinear PBE for 1VSZ. At the same time, the efficiency

decreases slowly when the number of used processors

increases for solving both linear and nonlinear PBE (Figs. 2b

and 3b). This observation confirms our previous discussion

and reflects the ratio outlined in Eq. (8). However, one can see

that the new parallel method maintains better efficiency when

solving nonlinear PBE, because more computations are

involved comparing with solving linear PBE. Moreover, Figure

2b shows that ‘‘super-linear’’ speedup is achieved when solving

nonlinear PBE for 1VSZ on less than 15 processors (see the be-

ginning of the graph when only a few processors are involved

in the calculations). It is another indication of the high effi-

ciency of the algorithm.

Acknowledgments

The authors thank Shawn Witham for reading the manuscript

before submission.

Keywords: electrostatics � DelPhi � Poisson–Boltzmann equa-

tion � Gauss–Seidel iteration � parallel computing

How to cite this article: C. Li, L. Li, J. Zhang, E. Alexov, J. Comput.

Chem. 2012, 33, 1960–1966. DOI: 10.1002/jcc.23033

Additional Supporting Information may be found in the

online version of this article.

[1] A. Nicholls, B. Honig, J. Comput. Chem. 1991, 12, 435.

[2] M. K. Gilson, A. Rashin, R. Fine, B. Honig, J. Mol. Biol. 1985, 184, 503.

[3] D. A. Case, T. E. Cheatham, III, T. Darden, H. Gohlke, R. Luo, K. M. Merz, Jr., A. Onu-

friev, C. Simmerling, B. Wang, R. J. Woods, J. Comput. Chem. 2005, 26, 1668.

[4] R. Luo, L. David, M. K. Gilson, J. Comput. Chem. 2002, 23, 1244.

[5] M. J. Hsieh, R. Luo, Proteins 2004, 56, 475.

[6] C. Tan, L. Yang, R. Luo, J. Phys. Chem. B 2006, 110, 18680.

[7] B. R. Brooks, C. Brooks, III, A. Mackerell, Jr., L. Nilsson, R. Petrella, B. Roux, Y.

Won, G. Archontis, C. Bartels, S. Boresch, J. Comput. Chem. 2009, 30, 1545.

[8] J. A. Grant, B. T. Pickup, A. Nicholls, J. Comput. Chem. 2001, 22, 608.

[9] D. Bashford, In Lecture Notes in Computer Science; Y. Ishikawa, R. Old-

ehoeft, J. Reynders, M. Tholburn, Eds.; Springer Berlin: Heidelberg,

1997; pp. 233–240.

[10] M. E. Davis, J. A. McCammon, J. Comput. Chem. 1989, 10, 386.

[11] B. Lu, X. Cheng, J. Huang, J. A. McCammon, J. Chem. Theory Comput.

2009, 5, 1692.

[12] S. Yu, G. Wei, J. Comput. Phys. 2007, 227, 602.

[13] D. Chen, Z. Chen, C. Chen, W. Geng, G. W. Wei, J. Comput. Chem.

2011, 32, 756.

[14] A. H. Boschitsch, M. O. Fenley, H. X. Zhou, J. Phys. Chem. B 2002, 106, 2741.

[15] C. M. Cortis, R. A. Friesner, J. Comput. Chem. 1997, 18, 1591.

[16] M. Holst, N. Baker, F. Wang, J. Comput. Chem. 2000, 21, 1319.

[17] N. A. Baker, D. Sept, S. Joseph, M. J. Holst, J. A. McCammon, Proc. Natl.

Acad. Sci. USA 2001, 98, 10037.

[18] I. Klapper, R. Hagstrom, R. Fine, K. Sharp, B. Honig, Proteins 1986, 1, 47.

[19] S. Zhao, G. Wei, J. Comput. Phys. 2004, 200, 60.

[20] Y. Zhou, S. Zhao, M. Feig, G. Wei, J. Comput. Phys. 2006, 213, 1.

[21] Y. Zhou, G. Wei, J. Comput. Phys. 2006, 219, 228.

[22] S. Yu, Y. Zhou, G. Wei, J. Comput. Phys. 2007, 224, 729.

[23] S. Sridharan, A. Nicholls, B. Honig, Biophys. J. 1992, 61, A174.

[24] J. W. Demmel, Using MPI-2: Advanced Features of the Message Passing

Interface. xiþ 419 pp. Demmel: William Gropp, Ewing Lusk, Anthony Skjel-

lum, MIT Press, ISBN 0-262-57133-1, 1999.

[25] W. Gropp, E. Lusk, R. Thakur, Applied Numerical Linear Algebra. By James W.

Demmel. SIAM, Philadelphia, PA, 1997. Xiþ419 pp., softcover: ISBN 0-89871-

389-7. MIT Press: Cambridge, MA, 1999.

[26] B. Jayaram, K. A. Sharp, B. Honig, Biopolymers 1989, 28, 975.

[27] R. Bulirsch, J. Stoer, Introduction to Numerical Analysis; Springer-Ver-

lag: New York, 1980.

[28] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir, T. Skjel-

lum, M. Snir, In Lecture Notes in Computer Science; L. Boug�e, P. Fraigniaud, A.

Mignotte, Y. Robert, Eds.; Springer Berlin: Heidelberg, 1996; pp. 128–135.

[29] R. Thakur, W. Gropp, B. Toonen, Int. J. High Perform. Comput. Appl. 2005, 19, 119.

[30] B. Barrett, G. Shipman, A. Lumsdaine, Recent Advances in Parallel Virtual

Machine and Message Passing Interface, Analysis of Implementation

Options for MPI-2 one-sided, Vol. 4757/2007, pp. 242–250. Springer Berlin

/ Heidelberg, 2007, DOI: 10.1007/978-3-540-75416-9_35.

[31] C. Galen, Palmetto Cluster User Guide, available at: http://desktop2pe-

tascale.org/resources/159. Accessed on May 22, 2012.

[32] F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer, Jr., M. D.

Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, M. Tasumi, Eur. J. Bio-

chem. 1977, 80, 319.

[33] J. Ponder, F. Richards, J. Comput. Chem. 1987, 8, 1016.

[34] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.

Received: 17 February 2012
Revised: 20 April 2012
Accepted: 11 May 2012
Published online on 4 June 2012

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

1966 Journal of Computational Chemistry 2012, 33, 1960–1966 WWW.CHEMISTRYVIEWS.COM

http://c-chem.org/
http://chemistryviews.com/
http://chemistryviews.com/
http://chemistryviews.com/


Copyright of Journal of Computational Chemistry is the property of John Wiley & Sons, Inc. and its content

may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express

written permission. However, users may print, download, or email articles for individual use.


