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Abstract

Electrical propagation in excitable tissue, such as nerve �bers and heart muscle,

is described by a nonlinear di�usion-reaction parabolic partial di�erential equation

for the transmembrane voltage V (x; t), known as the cable equation. This equation

involves a highly nonlinear source term, representing the total ionic current across

the membrane, governed by a Hodgkin-Huxley type ionic model, and requires the

solution of a system of ordinary di�erential equations. Thus, the model consists of a

PDE (in 1-, 2- or 3-dimensions) coupled to a system of ODEs, and it is very expensive

to solve, especially in 2 and 3 dimensions.

To solve this problem numerically, we develop and implement an extension

of the time-parallel Parareal Algorithm, introduced by Lions-Maday-Turinici in

2001, to e�ciently incorporate space-parallelized solvers into the time-parallelization

framework of the Parareal algorithm, to achieve time-and-space parallelization.

We analyze the speedup, e�ciency, and scaling of space-only, time-only, and time-

and-space parallel algorithms, and determine conditions under which each is likely to

perform well.

We present numerical results and comparison of the performance of several serial,

space-parallelized and time-and-space-parallelized time-stepping numerical schemes

in one-dimension and in two-dimensions on the electrical potential propagation

problem.

Finally, we conduct extensive numerical experiments of action potential propaga-

tion in cardiac tissue in one and two dimensions, to determine the e�ect of varying
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certain biological parameters and their in
uence on the action potential duration and

propagation velocity.
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Chapter 1

BIOLOGICAL INTRODUCTION

The heart is considered to be the most important organ, and also most studied, in

the human body for thousands of years. Figure 1.1 shows the structure of the human

heart.

Figure 1.1: Structure diagram of the human heart from an anterior
view [46].

In the present era, cardiology clinics and research use an enormous number of

cutting-edge computer techniques. One such technique employs computers in medical

research and constructs mathematical and computer models of biomedical systems
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and processes. In several circumstances the use of these models has now reached the

stage of practical clinical usefulness.

An iterative process of conducting cardiac studies is described in [53] as follows.

First, a mathematical model/equation for certain biological/physical quantities is

established. Next, numerical techniques are employed to solve the equation and an

approximate solution at a number of discrete grids is obtained. Finally, the results

have to be validated by comparing them to physical measurements. For a complex

phenomenon such as the electrical activity of the heart, it is likely that signi�cant

di�erences will be observed between measured and simulated values. The di�erences

are usually caused by limitations in the mathematical model. In this case, a re�nement

of the mathematical model is required, and previous steps will be repeated on the

re�ned model. This process is illustrated in Figure 1.2.

Figure 1.2: The mathematical models are developed through a
continuous interaction between modelling, computer simulations, and

physical experiments [53].

According to [39, 40, 41], mathematical and computer models aiming at repro-

ducing cardiac electrophysiological processes can be classi�ed into four categories,
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depending on the level of detail at which the processes are simulated. (1) Models

in the most detailed level simulate intracellular processes, such as membrane ionic

currents, of individual cells. (2) Models/Systems in a less accurate level simulate

blocks of cardiac tissue composed of several tens or hundreds of cells and reproduce

the processes of the interactions between neighboring cells and neighboring blocks

of cells. (3) Models in an even lower level of detail study excitation properties and

cardiac electric �elds related either to the entire heart or to entire ventricles (including

their geometrical properties). (4) Marcroexcitation models in the lowest level of detail

divide the entire heart into a small number of regions (such as the right and left

atrium, atrioventricular node, left and right ventricle, etc.) and treat each of these

parts as an elementary unit [39, 40]. Global excitation properties and arrhythmia

manifestation can be modeled in this way [41]. This classi�cation is shown in Figure

1.3.

Figure 1.3: Schematic classi�cation of heart and mathematical &
computer models [40].

This research focuses on electrophysiological models of individual cells and of

bundles of cells, that simulate intracellular processes such as membrane ionic currents

and propagation of action potentials. A brief history of developments and studies of

cardiac cellular models is presented in the next section.
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1.1 Overview of Cardiac Cellular Models

In the early 1950's, Hodgkin and Huxley analysed ionic currents during the excitation

of squid nerve axon and constructed mathematical equations modeling the action

potential and activation conduction, based on changes of concentrations of sodium

and potassium and their transmembrane conductances [25]. They won the Nobel

Prize in Physiology for their pioneering work in 1963. The Hodgkin-Huxley model

is the �rst successful mathematical model describing the behavior of excitable cells.

Moreover, the basic excitation conduction mechanism may be applicable to other

excitable cells, though very di�erent parameters might be required to account for the

large di�erences in action potentials in di�erent cells.

Since the Hodgkin-Huxley model was published, various modi�cations and

improvements of the mathematical model have been developed to make it more

appropriate for cardiac muscle cells of di�erent species. These modi�cations and

improvements are based on recent experiments and observations to remove the

restrictive assumption of constant ionic concentrations in the Hodgkin-Huxley model,

and incorporate the sodium pump currents, sodium-calcium currrent exchangers and

the presence of several types of calcium channels with varied kinetics into the modeling

equations [40] (Figure 1.4). With more and more details about the ionic activity of

cellular membranes and intracellular particles are incorporated, most recent models

are constructed to reproduce the activity of individual cell types due to the di�erences

between types of cardiac cells are signi�cant [40].

The Luo-Rudy Phase I model [32] is one of these improved models, which will be

used in all our simulations. It will be described in detail in x2.2.2.
Recent simulation studies use these models to investigate ionic potentials and

currents as well as other aspects of cardiac cell behavior. An example, described in

[40], studies the infulence of heart rate on ionic concentrations and simulates cellular

mechanisms of excitation-contraction coupling. The results are shown in Figure 1.5.
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Figure 1.4: Basic structure of the ionic
regulation system for sodium, potassium,
and calcium in myocytes. This represents
only a minimum set of transport mecha-
nisms incorporated into a model of ionic
currents. The large oval represents the
surface membrane of a single cell: the
central oval represents the mitochondrial
membrane; and the compartment at
the bottom of the picture images the
sarcoplasmic reticulum. The authors of the
model point out that the cell nucleus and
intranuclear calcium transport should also
be incorporated. Within the model, each
transport mechanism must be described by
an individual equation [40].

Figure 1.5: An example of the results
of a cellular modeling study simulating
rabbit atrial myocytes during regular stim-
ulation. Curve i shows the modeled action
potential; curve ii demonstrates the total
cytosolic calcium (left calibration axis);
curve iii shows contraction, expressed as a
percentage of maximum contraction(right
calibration axis); and curve iv expresses
the extracellular calcium transient. The
inset of the �gure in the right upper corner
shows experimental data corresponding to
curve i, iii, and iv. Note the close
resemblance between these experimental
observations and the simulated results [40].
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One important subject in cardiac simulation studies is modeling of cardiac

arrhythmias, pathological conditions under which regular activation may decay into

complex and irregular patterns that impair functionality of the heart and may lead

to death. One goal of my research is to explore if it is possible to induce arrhythmia

in one and/ or two-dimensional simulations of cardiac tissue.

1.2 Action Potential and Related Biological Quan-

tities

Action potentials (AP) are voltage waveforms that propagate along a cell and between

cells. They are due to selective permeability of ion channels on the plasma membrane

of excitable cells.

A variety of action potential types exist in many cell types according to the types

of voltage-gated channels, leak channels, channel distributions, ionic concentrations,

membrane capacitance, temperature, and other factors.

Neuronal and cardiac APs are often referred to as "all-or-nothing". That is,

the action potential either occurs fully (cell is depolarized) or it does not ocurr at all

(cell is polarized, near resting state).

This unique all-or-nothing property distinguishes the action potential from graded

potentials such as receptor potentials, electrotonic potentials, and synaptic potentials,

which scale with the magnitude of the stimulus [57].

When it occurs, the action potential has a characteristic shape, largely indepen-

dent of the stimulus strength. A typical myocardial action potential is shown in

Fig.1.6 with the various phases marked by numbers. The sharply rising phase ("0"

in 1.6) is caused by the opening of a large number of Na+-selective ion channels in

response to su�ciently large increase in membrane potential, resulting in in
ux of

sodium and depolarizing the cell. Sodium channels close shortly after they open,

causing the small drop ("1"). The falling phase ("3") is due to potassium channels
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opening in response to depolarization, allowing K+ ions to 
ow out of the cell.

The characteristic plateau ("2") results from the opening of voltage-sensitive calcium

channels.

Figure 1.6: Schematic shape of myocardial action potential [57].

Another important property of action potentials is refractoriness, which means

that it is impossible to evoke a second AP during and for a short time period after an

action potential has occurred due to deactivation of sodium channels, which also

prevents the AP from propagating backwards. This period is referred to as the

absolute refractory period (ARP). An action potential can be evoked, but only by

a larger stimulus than was required to evoke the �rst action potential, in a period

referred to as the relative refractory period (RRP) after the absolute refractory period.

Once transients have settled out, stimulation by an ongoing supra-threshold stimulus

leads to repetitive constant �ring [56].

In cardiac myocytes, the action potential travels smoothly in the cell, with

constant shape and at constant velocity once initiated. The leading edge of the

action potential depolarizes adjacent unexcited portions of the cell and brings them

to threshold. In the wake of the action potential, the membrane is refractory and

prevents re-excitating previously active portions of the cell [56].

Certain quantities pertaining to an action potential are characteristic of the cell

and the ionic currents, and independent of the stimulus, cable length, and locations

used for measurement. Thus these quantities also serve as accuracy indicators on the

numerical schemes. Such important quantites, which are tracked in our simulations,

are the following:
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� Action Potential Duration (APD): The duration is determined by measur-
ing how long the potential V at a speci�c location stays above a certain cut-o�

value. In our computations, APD is determined by setting a cut-o� voltage at

90% of the initial equilibrium voltage.

We record APDs at two locations, one near the left end and one near the

right end, denoted respectively as APD0 and APD1 in the tables later. These

locations are user-settable in the codes; usually APD0 is measured at node 100

and APD1 at node (M � 100), with M the total number of control volumes.

� Propagation Velocity: It measures how fast the action potential propagates

along the cable. It is measured by the di�erence of the starting time of APs at

two speci�ed locations.

� Maximum voltage (Vmax) and maximum rate of change (dV=dtmax).

1.3 Arrhythmia

Cardiac arrhythmia is a dangerous heart condition that may lead to suddent death.

According to [1], each year about 295,000 emergency medical services-treated out-

of-hospital cardiac arrests occur in the United States, and many of them are due to

cardiac arrhythmias. Arrhythmias occur throughout the population and may result

from either ventricular tachycardia (VT)/ventricular �brillation (VF) , an extremely

fast, chaotic rhythm; or ventricular bradycardia (VB), an extremely slow, chaotic

rhythm, during which the lower chambers quiver and the heart cannot pump any

blood, causing cardiac arrest. Arrhythmias can also cause serious injury to other

organs. The brain, kidneys, lungs or liver may be damaged during prolonged cardiac

arrest.

The most dangerous cardiac arrhythmias are usually associated with abnormal

wave propagation caused by reentrant sources of excitation. A lot of research has been

performed on animal hearts (rat, guinea pig, rabbit, dog, etc.), but the mechanisms
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underlying the initiation and subsequent dynamics of these reentrant sources in

the human heart still remain unknown, not only due to the limited possibilities of

invasively studying cardiac arrhythmias in humans [54], but also due to some major

limitations of experimental studies of ventricular arrhythmias. One major limitation,

for instance, is that the underlying excitation patterns are three dimensional which

cannot be recorded only from the surface of the heart in biological laboratory

experiments [54]. These limitations make computational modeling, especially detailed

quantitative modeling of the human heart, an ideal research approach in cardiology.

Establishing a suitable model describing electrodynamical properties of cardiac

cell bundles is the core of any cardiac arrhythmia modeling study. Most detailed

electrophysiological models have been formulated for animal cardiomyocytes because

of the limitations of experimental research described above. For example, the Noble

model (Noble et al., 1998) and the Luo-Rudy models (Luo and Rudy, 1991, 1994)

were formulated for guinea pig ventricular cells, whereas the Winslow (Winslow et

al., 1999) model was formulated for canine ventricular cells [54].

Though models for animal cardiomyocytes are useful, models for human ventric-

ular myocytes are still much needed since animal cardiomyocytes di�er from human

ones in many important biological aspects (action potential shape and duration,

range of normal heart rates, action potential restitution and relative importance of

ionic currents in the action potential generation, etc.), and these factors may have

noticeable in
uence on the mechanism of arrhythmia initiation and dynamics [54].

Several models of human ionic currents have bene�ted from newly developed

experimental techniques and been developed for human cardiomyocytes in recent

years. Some important ones, mentioned in [54] as well, are the following.

� PB model: The �rst model for human ventricular myocytes published by

Priebe and Beuckelmann in 1998 [43].

This model composed of 15 varibles and was largely based on the Luo-Rudy

phase II model for guinea pig ventricular cells [33].
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� redPB model: A reduced version of the PB model proposed by Bernus,

Verschelde and Pan�lov in 2002 [7].

This model reduced to 6 varibles by reformulating some currents and �xating

intracellular ionic concentrations.

� TNNP model: A new model for human ventricular myocytes introduced by

Tusscher, Noble, Noble and Pan�lov in 2004 [55].

This model was constructed as a compromise between physiological detail

and computational cost of large-scale spatial simulations. It consisted of 16

varibles and used experimental data from human ventricular cell and ion channel

expression experiments to formulate all major ionic currents.

� IMW model: Another model for human ventricular myocytes constructed by

Iyer, Mazhari and Winslow in 2004 [26].

This model involved a large number (67) of varibles resulting from formulations

for major ionic currents by Markov chain instead of Hodgkin-Huxley type. It

was obtained from expression data on human cardiac ion channels, comparing

to the TNNP model from data on human ventricular cells.

In light of the above, this work will use the Luo Rudy phase I (1991) ionic model

[32], which is one of the most widely used ionic models, serving as prototype of

other models for human ventricular cells. It contains all essential features of other

models, so it is su�cient for our purpose here, which is to develop e�cient numerical

algorithms for electrophysiological simulation of cardiac tissue. Moreover, it can be

replaced by any other ionic model fairly easily in our modular codes.

Simulation of arrhythmias will be attempted by manipulating values of concentra-

tions of ions and other parameters of the ionic model, as will be seen in the following

chapters.
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Chapter 2

MATHEMATICAL MODELING

Previous modeling studies were based on single columns of uniform length cardiac

cells (Figure 2.1) and suggested that propagation was always "discontinuous", i.e.

had rather rapid propagation through the cell bodies, with signi�cant delays, due to

the increased resistance of the gap junctions connecting the simulated cells.

Figure 2.1: A typical single cell column model describing
discontinuous propagation [48]

In the mid 1980's, a series of experimental studies using two microelectrodes in line

in superfused Guinea pig papillary muscles were conducted by Buchanan et al [12, 11,

19, 20] to improve the general understanding of electrical propagation in the heart by

measuring the rate of rise of the upstroke of the action potential, dv=dtmax, and the

conduction velocity of the action potential simultaneously. Their results, suggesting

a square root relationship between dv=dtmax and conduction velocity, contradicted

the single cell column model and were criticised by others.

Later on, Buchanan et al compared existing models for electrical propagation

in the heart to the realities of their experimental preparations, and found several
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di�erences between the models and their preparations. First, single columns of cells

almost never occur in vivo. Cell columns aggregate into strands, and strands agrregate

into bundles in cardiac tissue. Second, cells are not of uniform length. Legnths of cells

randomly distribute between 30 and 130 �m [49]. Third, lateral as well as longitudinal

connectivity is provided by abundant physical and functional lateral gap junctions.

In 1990, Buchanan and Fujino constructed new models with the presence of

multiple cell columns and the lateral gap junctions. Cell columns in new models were

constructed consisting of cells of lenght randomly generated from 30-130 �m by a

pseudo-random generator. An element was inserted with intercellular longitudinal

resistance 10 times the value of intracellular elements. In addition, lateral gap

junctional connections were established between a cell column and its immediate

neighbor. Computational results showed that the presence of abundant lateral

connectivity led to wavefront smoothing in a two dimensional model and averaged

out the "discontinuities" in single cell column one dimensional models [10].

In order to build up a scalable and parallelizable way to model the electrical

propagation in the heart and accurately represent membrane ionic currents and the

cellular interconnections occurring with a sub-cellular spatial resolution, our codes

incorporated the random cell size and gap junctions of the Buchanan and Fujino

model in user-settable parameters minCx, maxCx, minCy and maxCy to describe

minimal/maximal cell size in longitudinal and latitudinal directions.

However, it should be pointed out here that all simulation experiments presented

in Chapter 5 used �xed minCx = maxCx = 16�m for one dimensional experiments,

and minCx = maxCx = 32�m, minCy = maxCy = 16�m for two dimensional

experiments, only for the sake of eliminating the e�ects of randomness so that

all numerical time-steppers were applied and compared on identical cables in x5.1.
Simulations of two dimensional cardiac tissue are described separately, in x5.2.

This chapter is organized as follows: A derivation the cable equation, following

[27, 42], is presented in x2.1. Two core ionic models, the Hdgkin-Huxley model and

Luo-Rudy phase I (1991) model, are described in x2.2.
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2.1 Derivation of the Cable Equation

The cell is assumed to be a cylinder which is isopotential in the radial direction and

called a cable. Thus, in the electrical description of the cell, the radius is incorporated

into the intracellular axial resisitance, resulting in a longitudinally oriented one-

dimensional circuit (Figure 2.2) when the cable is divided into a number of segments

of length dx of isopotential membrane.

Figure 2.2: Schematic diagram of a discretized cable, with
isopotential circuit elements of length dx [27]

The membrane capacitance is Cm , Ii and Ie are the interacellular and extracelluar

axial currents, ri and re are the resistances per unit length of the intracellular and

extracellular media, respectively.

The core conductor assumption [44] states that the potential depends only on the

length variable and not on radial or angular variables everywhere along its length. It

was mentioned in [27] that two types of current, axial current and transmembrane

current (Figure 2.2) must be taken into consideration and balanced in any piece when

the cable is divided into a number of segments of length dx of isopotential membrane.

The axial current has intracellular and extracellular components. Both satisfy

Ohm's law,

Vi(x+ dx)� Vi(x) = �Ii(x)ridx; (2.1)
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Ve(x+ dx)� Ve(x) = �Ie(x)redx: (2.2)

In general,

ri = �Rc

Ai
; (2.3)

where Rc is the cytoplasmic resitivity, measured in units of Ohm-length, and Ai is

the cross-sectional area of the cable. A similar expression holds for the extracellular

space.

The minus sign on the right-hand sides is for the convention that positive current

is a 
ow of positive charges from left to right (in the direction of increaing x). If

Vi(x+ dx) > Vi(x), then positive charges 
ow in the direction of decreasing x, giving

a negative current.

Sending dx! 0 in (2.1) - (2.2) yields,

Ii = � 1

ri

@Vi
@x

; (2.4)

Ie = � 1

re

@Ve
@x

: (2.5)

Next, by Kirchho�'s law, any change in extracellular or intracellular axial current

must be due to a transmembrane current, and thus

Ii(x)� Ii(x+ dx) = Itdx = Ie(x+ dx)� Ie(x); (2.6)

where It is the total transmembrane current (positive outward) per unit length of

membrane. Again, sending dx! 0 in (2.6) yields

It = �@Ii
@x

=
@Ie
@x

: (2.7)
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In the case of a cable with no additional current sources, the total axial current is a

constant It = Ii + Ie. De�ning the transmembrane potential as V = Vi � Ve yields

� It =
ri + re
rire

@Vi
@x
� 1

re

@V

@x
; (2.8)

from which it follows that

1

ri

@Vi
@x

=
1

ri + re

@V

@x
� re
ri + re

It: (2.9)

Substituting (2.4) and (2.9) into (2.7), we obtain

It =
@

@x
(

1

ri + re

@V

@x
): (2.10)

Finally, the transmembrane current It is a sum of the capacitive and ionic currents,

and thus

It = p(Cm
@V

@t
+ Iion) =

@

@x
(

1

ri + re

@V

@x
); (2.11)

where p is the perimeter of the cable. Equation (2.11) is referred to as the cable

equation in [27], with Cm has units of capacitance per unit area of membrane, and

Iion has units of current per unit area of membrane.

If a current Istim, with units of current per unit area, is applied across the

membrane (as before, taken positive in the outward direction), then the cable equation

becomes

It = p(Cm
@V

@t
+ Iion + Istim) =

@

@x
(

1

ri + re

@V

@x
): (2.12)

With the assumption that ri and re are independent of x and setting the axial

resistance Ra = p(ri + re), the cable equation becomes

Cm
@V

@t
=

1

Ra

@2V

@x2
� Iion(V )� Istim(t); (2.13)
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where V is the transmembrane voltage, Ra and Cm are the axial resistance and

membrane capacitance. Iion represents the total ionic current, and Istim is the applied

stimulus current.

A consistent set of units for the quantities appearing in (2.13) are: x in cm, t in

ms, V in mV , Cm in �F=cm2, Ra in kOhm, Iion and Istim in �A=cm2.

However, these units are not natural and do not quite conform to the units

commonly used in electrophysiology. In input data values, we use the more natural

units: x in �m, t in ms, V in mV , Ri in Ohm cm, and then insert a factor of 10�3

to convert Ri to kOhm cm, which results in units of kOhm for Ra.

Equation (2.13) is a parabolic equation with a nonlinear source Iion which must

be speci�ed either by the Hodgkin-Huxley model or other more complicated ionic

models, such as the Luo-Rudy (1991) model, to be described below.

2.2 Ionic Models

2.2.1 The Hodgkin-Huxley ionic model

Hodgkin and Huxley developed a system of equations describing the electrical

activity of the squid giant axon by viewing a segment of the axon as a simple

equivalent electrical circuit [25], as shown in Figure 2.3. The membrane separates

the extracellular medium from the cytoplasm of the cell and serves as a capacitor

with capacitance Cm in the circuit.

Since the model was estabilished by A.L. Hodgkin and A.F. Huxley in the 1950's,

it has been applied to many classes of neurons and to other aspects of neuron

physiology, making these equations a fundamental tool for studying mechanisms

of neuronal behavior. The Hodgkin-Huxley model was the �rst complete model

successfully describing excitability of a single cell. Almost all other more recent

and more complicated ionic models simulating excitable cells in various species are

based on the equations of the Hodgkin-Huxley model [24].
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Figure 2.3: Equivalent circuit for Hodgkin-Huxley model of the
squid giant axon [25]. RNa = 1=gNa, RK = 1=gK , and RL = 1=gL. All

other quantities are constants.

A brief description of the Hodgkin-Huxley model is given in this section. Detailed

mathematical formulation of the model is presented in Appendix A.

In the Hodgkin-Huxley model, the total membrane current I in a excitable cell is

a function of time t and membrane voltage V [25]

I = Cm
dV

dt
+ Iion(V ); (2.14)

where Cm is the membrane capacitance and Iion is an applied electrical current. In

a propagated action potential, the local circuit currents must be provided by the net

membrane current. This fact leads to the relation

i =
1

r1 + r2

@2V

@x2
; (2.15)

where i is the membrane current per unit length, r1 and r2 are the external and

internal resistances per unit length, and x is distance along the �ber. r1 is negligible

comparing to r2 in the case of an axon soaking in a large volume of conducting 
uid.
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Hence,

i =
1

r2

@2V

@x2
;

or equivalently,

I =
a

2R2

@2V

@x2
; (2.16)

where a is the radius of the �ber and R2 is the speci�c resistance of the axoplasm.

Substituting (2.16) into (2.14) yields an equation of the same form as the cable

equation for voltage V ,

a

2R2

@2V

@x2
= Cm

dV

dt
+ Iion(V ): (2.17)

The electrical current Iion on the right-hand side of (2.17) consists of three ionic

currents: a sodium current INa, a potassium current IK and a leakage current IL,

Iion(V ) = INa(V ) + IK(V ) + IL(V ): (2.18)

These ionic currents depend on three activation and inactivation "gates": m, h and

n, which take values between 0 and 1 and are governed by ODEs of the same form

dg

dt
= �g(1� g)� �gg; g = m;h; n (2.19)

where the �g's and �g's are given by explicit formulas as functions of voltage V in [25].

The ionic currents, in turn, change transmembrane voltage V , which subsequently

a�ects the ionic gates and currents.

The Hodgkin-Huxley model is completely described by the system of di�erential

equations (2.17) - (2.19). Hodgkin and Huxley reduced the PDE (2.17) into a 2nd-

order ODE (in space) and solved the system numerically during steady propergation,

due to the fact that no e�cient numerical techniques for solving PDEs was available

at that time [25]. At present, with newly developed numerical methods for PDEs,

this system can be solved numerically provided the initial values for V , m, h and n at
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starting time t0 and boundary condition of V . Figure 2.4 shows how the gates vary

in time over 500ms.

Figure 2.4: Time course of gates of the Hodgkin-Huxley model

2.2.2 The Luo-Rudy Phase I (1991) ionic model

The Luo-Rudy phase I (1991) model in guinea pig ventricular cells was an update

of the Beeler-Reuter mammalian ventricular model (1977) (BR model). Like the

BR model, the Luo-Rudy phase I (1991) model is an adaptation and extension of

the Hodgkin-Huxley formalism to ventricular cells. The Luo-Rudy phase I (1991)

model updated the BR model by reformulating the permissive and non-permissive

rate coe�cients for the sodium current and introducing three new currents: a time-

independent potassium current, a plateau potassium current, and a time-independent

background current, based on more recent experimental results [32].

The current Iion in this model consists of six ionic currents (while Hudgkin-Huxley

has only three):

Iion(V ) = INa(V ) + ISI(V ) + IK(V ) + IK1(V ) + IKp(V ) + Ib(V ); (2.20)
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where INa is a fast sodium current, characterized by fast upstroke velocity and slow

recovery from inactivation; ISI is a slow inward current; IK is a time-dependent

potassium current; IK1 is a time-independent potassium current that includes a

negative-slope phase and displays signi�cant crossover phenomenon as [K]o is varied;

IKp is a plateau potassium current; and Ib is a time-independent background current.

The Luo-Rudy phase I (1991) model not only reproduced the e�ects of [K ]o on

action potential duration and rest potential, which will be explored later in x5.1.5
and x5.2, but also demonstated the e�ects of the slow recovery of INa in determining

the response of the cell [32]. Later on, Luo and Rudy updated their model further to

produce the Luo-Rudy Phase II (1994) model [33].

The ionic currents are determined by ionic gates, whose gating variables are

obtained as a solution to a coupled system of seven highly nonlinear ODEs, which

are of the same form as (2.19). Typical behavior of the gates is shown in Figure 2.5.

Figure 2.5: Time course of gates of the Luo-Rudy model

The complete mathematical formulation of the Luo-Rudy phase I (1991) model is

presented in Appendix B. A plain C code of this model was downloaded from cellML

[14] and used in our numerical experiments.
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Chapter 3

NUMERICAL ALGORITHMS

Assuming homogeneous Neumann boundary condition along the boundary, i.e.

zero normal derivative of voltage, the mathematical model describing electrical

propagation in tissue occupying a region 
 is an initial-boundary value problem

(IBVP) for a system of di�erential equations,

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

Cm
@
@t
V (x; t) = r � ( 1

Ra
rV (x; t))� Iion(V );

dgp
dt

= �gp(V )(1� gp)� �gp(V )gp

@V
@n

= 0; 8x 2 @
 (Boundary Condition)

V (x; 0) = V0(x); gm(0) = gp0; (Initial Condition)

x 2 
; a bounded domain inRd; d = 1; 2; 3; 0 � t � T:

(3.1)

where gp's are gate variables in the ionic model (p = 1; 2; 3 for Hudgkin-Huxley model

and p = 1; :::; 7 for Luo-Rudy model).
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The system of equations (3.1) consists of one PDE for voltage V and several

ODEs for gate variables. We therefore discretize the PDE in space (by �nite volume

discretization) and rewrite (3.1) as a system of ODEs in time at spatial nodes.

By de�ning the state variable �(x; t) = CmV (x; t) and the 
ux F (x; t) = � 1
Ra
rV ,

the PDE can be rewritten as

@

@t
�(x; t) = �r � F (x; t)� Iion(V ):

De�ne the volume average of �(x; t) in ith control volume 
i at time t as

�i(t) =
1

j
ij
Z

i

�(x; t)d
i;

where j
ij is the volume of 
i. Integrating the PDE over each control volume 
 i, we

have
d

dt
�i(t) = �

1

j
ij
Z

i

r � F (x; t)d
i � 1

j
ij
Z

i

Iion(V )d
i :

Now, we apply the divergence theorem,
R


r � Fd
 =

R
S
F � ndS, and substitute the

volume integral of the divergence with the normal component of F (x; t) evaluated at

the surface of the �nite volume 
i to obtain a semi-discrete numerical scheme:

d

dt
�i(t) = �

1

j
ij
Z
@
i

F (x; t) � rndS � 1

j
ij
Z

i

Iion(V )d
i :

or equivalently,

Cm
d

dt
V i(t) = � 1

j
ij
Z
@
i

F (x; t) � �!n dS � 1

j
ij
Z

i

Iion(V )d
i : (3.2)

Notice that equation (3.2) is exact for the volume averages, i.e. no approximations

have been made during its derivation.
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Now we approximate the voltage and Iion at the center of control volume 
i (at

time t) by Vi(t) � V i and Iion(Vi) � 1
j
ij

R

i
Iion(V )d
i, respectively. We have

Cm
d

dt
Vi(t) = � 1

j
ij
Z
@
i

F (x; t) � �!n dS � Iion(Vi): (3.3)

To compute the 
ux term on the right hand side of equation (3.3), for simplicity,

we choose uniform rectanglular control volumes 
 i = �x��y ��z. Then we have

1D:
dVi
dt

=
1

Cm

"
Fi� 1

2
� Fi+ 1

2

�x
� I(Vi)

#
;

2D:
dVi;j
dt

=
1

Cm

"
Fi� 1

2
;j � Fi+ 1

2
;j

�x
+
Fi;j� 1

2
� Fi;j+ 1

2

�y
� I(Vi;j)

#
;

3D:
dVi;j;k
dt

=
1

Cm

"
Fi� 1

2
;j;k � Fi+ 1

2
;j;k

�x
+
Fi;j� 1

2
;k � Fi;j+ 1

2
;k

�y
+

Fi;j;k� 1
2
� Fi;j;k+ 1

2

�z
� I(Vi;j;k)

#
;

(3.4)

where i, j, k are indices in x; y; z�directions, and F(i;j;k)� 1
2
are corresponding 
uxes

at the left and right faces, respectively. In simpli�ed indexing, the (di�usive) 
uxes

are:

Fi� 1
2
=

1

Rai�
1
2

Vi�1 � Vi
�x

; Fj� 1
2
=

1

Raj�
1
2

Vj�1 � Vj
�y

; Fk� 1
2
=

1

Rak�
1
2

Vk�1 � Vk
�z

:

Similarly, applying the ODEs for the gate variables in (3.1) at each control volume

yields
dgp
dt

= �gp(Vi;j;k)(1� gp)� �gp(Vi;j;k)gp: (3.5)
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Thus, a semi-discrete problem for (3.1) on each control volume 
 i;j;k is given by (with

simpli�ed indexing for 
uxes)

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

dVi;j;k
dt

= 1
Cm

�
F
i� 1

2
�F

i+1
2

�x
+

F
j� 1

2
�F

j+1
2

�y
+

F
k� 1

2
�F

k+1
2

�z
� I(Vi;j;k)

�
;

dgp
dt

= �gp(Vi;j;k)(1� gp)� �gp(Vi;j;k)gp

Vx(0; y; z; t) = Vy(x; 0; z; t) = Vz(x; y; 0; t) = 0; (Boundary Conditions)

V (x; y; z; 0) = V0; gp(0) = 0; (Initial Conditions)

(x; y; z) 2 [0; Lx]� [0; Ly]� [0; Lz]; 0 � t � T:

(3.6)

We employ the following time stepping schemes to solve equation (3.6):

� Super-Time-Stepping Scheme, described in x3.1,

� DuFort-Frankel Scheme, described in x3.2,

� Runge-Kutta Schemes, explicit and implicit, of various orders, described in x3.3.

3.1 Super-Time-Stepping (STS) Scheme

Super time-stepping is a simple method to accelerate explicit schemes for parabolic

problems [3]. In this section, we �rst state the idea of super time-stepping and then

establish the stability and convergence of the scheme.

To simplify notation, let us rewrite the �rst semi-discrete equation in (3.6) in

vector form as

d
�!
V

dt
(t) + A

�!
V (t) =

�!
f (
�!
V ) t > 0

�!
V (0) =

�!
V 0: (3.7)
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Applying the standard Forward Euler explicit scheme on (3.7) yields

�!
V n+1 =

�!
V n ��tA

�!
V n +�t

�!
f (
�!
V n) = (I ��tA)

�!
V n +�t

�!
f (
�!
V n)

n = 0; 1; :::
�!
V 0 =

�!
V 0;

where
�!
V is a vector of values of voltage on all control volumes, �t is the time step,

�!
V 0

is the vector of the given initial values, and A is a symmetric positive de�nite matrix

representing the discretized Laplace operator together with the boundary conditions.

For example, in the one dimentsional case,

A = (
1

Cm�x2
)

26666666664

1 �1 0 � � � 0 0

�1 2 �1 � � � 0 0
...

...
...

. . . � � � � � �
0 0 0 � � � 2 �1
0 0 0 � � � �1 1

37777777775
The time step in Forward Euler scheme is subject to the restrictive stability condition

(the famous Courant-Friedrichs-Lewy (CFL) stability condition)

�(I ��tA) < 1 =) �t < �texpl =
2

�max
;

where �(�) denotes the spectral radius and �max stands for the largest eigenvalue of

A.

STS relaxes restriction of the CFL condition by requiring stability at the end of a

cycle of N time steps, rather than at the end of each time step �t, thus leading to a

Runge-Kutta-like method with N stages. A superstep �T , consisting of N substeps

�1,...,�N , �T =
PN

j=1 �j, is introduced in the scheme. The idea is to achieve stability

at the end of the superstep �T as well as maxmize the duration of the superstep.
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The new scheme can be written as

�!
V n+1 =

 
NY
j=1

(I � �jA)

!
�!
V n +

NX
j=1

(I � �j+1A):::(I � �NA)�j
�!
f (
�!
V n;j);

for n = 1; 2; ::: (3.8)

where V n;j denotes the computed voltage at time n�T +
Pj

k=1 �k. Note that jjI �
�jAjj � 1 for all j = 1; :::; N . Assuming f is bounded in 
 � [0; T ] (which is true

by the construction of ionic models), the second term on the right hand of (3.8 ) is

bounded

jj
NX
j=1

(I � �jA):::(I � �NA)�j
�!
f (
�!
V n;j)jj � jjf jj1

NX
j=1

�j = jf j1�T :

Therefore, the corresponding stability condition for (3.8) is

�

 
NY
j=1

(I � �jA)

!
< 1;

which is the same as that described in [3]. This relation is satis�ed if

�����
NY
j=1

(I � �j�)

����� < 1 8� 2 [�min; �max]:

To obtain 'strong' stability, we replace above condition by�����
NY
j=1

(I � �j�)

����� � K 8� 2 [�; �max];

where � is some number in the interval (0; �max], andK is some number between 0 and

1. The problem of �nding the 'optimal' values for the �j's can be then reformulated
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as [3]

Find �1; �2; :::; �N such that pN (�) =

NY
j=1

(1� �j�) satis�es

jpN (�)j � K 8� 2 [�; �max] (stability), and

jp0N (0)j =
NX
j=1

�j maximal (optimality):

It is also pointed out in [3] that using the optimality properties of the Chebyshev

polynomials TN (�) of degree N , the optimal values of the �j's are those for which

pN (�) = TN

�
�max + �� 2�

�max � �

��
TN

�
�max + �

�max � �

�
;

provided

K = 1=TN

�
�max + �

�max � �

�
� 1:

Note that K may be chosen arbitrarily close to 1 by choosing � small enough.

The substeps �j's corresponding to the above polynomial pN are given explicitly by

�j = 2

�
(��max + �) cos

�
2j � 1

N

�

2

�
+ �max + �

��1
= �texpl

�
(�1 + �) cos

�
2j � 1

N

�

2

�
+ 1 + �

��1
; j = 1; :::; N; (3.9)

where 0 < � = �=�max < �min=�max.

Theorem 3.1. (Stability)

If jjf jj1 < 1, the super-time-stepping scheme for problem (3.6) is stable at the end

of every superstep consisting of N substeps given in (3.9).
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Moreover, one can also show that

�T =
NX
j=1

��j = �texpl
N

2
p
�

"
(1 +

p
�)

2N � (1�p�)2N
(1 +

p
�)

2N
+ (1�p�)2N

#
; (3.10)

which yields

�T ! N 2�texpl as � ! 0: (3.11)

Equation (3.11) shows that super-time-stepping is (up to) N times faster than the

standard explicit scheme. The speed-up comes from that a superstep consisting of N

substeps covers a time interval, at essentially the same cost, N times longer (when

� � 0) than time N�texpl, which is covered by N explicit steps, each of length �texpl.

Only the values at the end of each superstep approximate the solution of the

problem since STS ensures stability only at the end of each superstep. STS reduces

to plain Forward Euler by setting the parameters as N = 1, � = 0.

In addition to speeding up the computation, the super-time-stepping scheme is

extremely simple to implement in any existing explicit code. As we will see in x3.5,
it turns out to be, by far, the fastest of all eleven solvers we tested.

Theorem 3.2. (Convergence)

The numerical solution obtained by the super-time-stepping scheme on problem (3.6)

converges to the exact solution provided jjf jj1 < 1, f is Lipschitz continuous with

respect to V , and V Lipschitz continuous in t.

Proof. Using the semigroup approach and noting that �T =
PN

j=1 �j, the exact

solution of (3.6) at time t = k�T can be written in integral form as

�!
V (k�T ) = e��TA�!V ((k � 1)�T ) +

Z k�T

(k�1)�T

e�(k�T��)Af(
�!
V (� ))d�

= e��TA�!V ((k � 1)�T ) +

NX
j=1

Z (k�1)�T+
Pj

i=1 �i

(k�1)�T+
Pj�1

i=1 �i

e�(k�T��)Af(
�!
V (� ))d�:
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Therefore, the error between the exact and approximate solutions is given by

jjEkjj = jj�!V (k�T )��!V kjj
=





�e��TA�!V ((k � 1)�T ) +

Z k�T

(k�1)�T

e�(k�T��)Af(
�!
V (� ))d�

�
�  

NY
j=1

(I � �jA)

!
�!
V n +

NX
j=1

(I � �j+1A):::(I � �NA)�jf(
�!
V n;j)

!





�






e��TA�!V ((k � 1)�T )�
NY
j=1

(I � �jA)
�!
V n






+





Z k�T

(k�1)�T

e�(k�T��)Af(
�!
V (� ))d� �

NX
j=1

(I � �j+1A):::(I � �NA)�jf(
�!
V n;j)







�






e��TA �
NY
j=1

(I � �jA)V
k�1






 jjV ((k � 1)�T )jj+





NY
j=1

(I � �jA)






 jjV ((k � 1)�T )� V k�1jj+

NX
j=1

Z (k�1)�T+
Pj

i=1 �i

(k�1)�T+
Pj�1

i=1 �i




e�(k�T��)Af(
�!
V (� ))� (I � �j+1A):::(I � �NA)f(

�!
V n;j)




 d�
Since A is positive de�nite, we have

jjV ((k � 1)�T )jj � jje�(k�1)�TAV0jj+ jjf jj1jjA�1e�(k�1)�TAjj
� jjV0jj+ C:

On the other hand, we notice that A being symmetric means that
QN

j=1(I � �jA) is

also symmetric, and thus the stability condition is equivalent to jjQN
j=1(I��jA)jj < 1.
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Then, by Lipschitz continuity of f and V , we have

NX
j=1

Z (k�1)�T+
Pj

i=1 �i

(k�1)�T+
Pj�1

i=1 �i




e�(k�T��)Af(
�!
V (� ))� (I � �j+1A):::(I � �NA)f(

�!
V n;j)




 d�
� C

NX
j=1

Z (k�1)�T+
Pj

i=1 �i

(k�1)�T+
Pj�1

i=1 �i




f(�!V (� ))� f(
�!
V n;j)




 d�
� C

NX
j=1

Z (k�1)�T+
Pj

i=1 �i

(k�1)�T+
Pj�1

i=1 �i

(� � (k � 1)�T )d�

� C
NX
j=1

(�1 + �2 + :::+ �j)
2

� CN�T 2:

Putting all these together yields

jjEkjj �





e��TA �

NY
j=1

(I � �jA)V
k�1






 (jjV0jj+ C) + jjEk�1jj+ CN�T 2

� k






e��TA �
NY
j=1

(I � �jA)V
k�1






 (jjV0jj+ C) + kCN�T 2:

Expanding and keeping only the lowest-order terms, we obtain

jjEkjj �
�
k
�max

2
jjV0jj+ C

�
�T 2:

As expected, the method is essentially of order one w.r.t �T .

It is worth noting that, although we justify the method only in case the operator

A appearing in (3.6) is a symmetric positive de�nite matrix, such an assumption does

not appear to be always required in practice.
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3.2 DuFort-Frankel (DF) Scheme

DuFort-Frankel, a modication of the Leapfog scheme, is an explicit, 2-step, second

order accurate in space and time, theoretically unconditionally stable scheme [36 ].

It is obtained as follows. Applying centered �nite di�erence in space and Forward

Euler in time on the �rst equation in (3.4) results in

Cm
V n+1
i � V n

i

�t
=

1

�x2

 
V n
i�1 � V n

i

Rai� 1
2

� V n
i � V n

i+1

Rai+ 1
2

!
+ Iion(V

n
i ):

This di�erence scheme is explicit but conditionally stable. It can be stabilized

by replacing the V n
i term with the average over two time steps (V n+1

i + V n�1
i )=2,

producing a 2-step scheme.

Cm
V n+1
i � V n�1

i

2�t
=

1

�x2

"
V n
i�1 � 1

2

�
V n+1
i + V n�1

i

�
Rai� 1

2

+
V n
i+1 � 1

2

�
V n+1
i + V n�1

i

�
Rai+ 1

2

#
� Iion (V

n
i ) :

The resulting di�erence equation is a three time level expression which has the

advantages of unconditional stability and second order accuracy in both time and

space [36].

However, numerical experiments show that small oscillations occur near the steady

state. To avoid this and keep the scheme explicit, the average of voltage at previous

two time steps is used to evaluate the ionic current Iion and yields,

Cm
V n+1
i � V n�1

i

2�t
=

1

�x2

"
V n
i�1 � 1

2

�
V n+1
i + V n�1

i

�
Rai� 1

2

+
V n
i+1 � 1

2

�
V n+1
i + V n�1

i

�
Rai+ 1

2

#
� Iion

�
V
n

i

�
; (3.12)

where V
n

i = (V n
i + V n�1

i )=2. This is the DF numerical scheme for the 1D cable

equation.
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Using the fact that the space directions are orthogonal, we can easily extend

scheme (3.12) to the three dimensional DuFort-Frankel di�erence scheme for the semi-

discrete cable equation in (3.6)

Cm

V n+1
i;j;k � V n�1

i;j;k

2�t

=
1

�x2

"
V n
i�1;j;k � 1

2

�
V n+1
i;j;k + V n�1

i;j;k

�
Rai� 1

2
; j; k

+
V n
i+1;j;k � 1

2

�
V n+1
i;j;k + V n�1

i;j;k

�
Rai+ 1

2
;j;k

#

+
1

�y2

"
V n
i;j�1;k � 1

2

�
V n+1
i;j;k + V n�1

i;j;k

�
Rai;j� 1

2
; k

+
V n
i;j+1;k � 1

2

�
V n+1
i;j;k + V n�1

i;j;k

�
Rai;j+ 1

2
;k

#

+
1

�z2

"
V n
i;j;k�1 � 1

2

�
V n+1
i;j;k + V n�1

i;j;k

�
Rai;;j;k� 1

2

+
V n
i;j;k+1 � 1

2

�
V n+1
i;j;k + V n�1

i;j;k

�
Rai;j;k+ 1

2

#
� Iion

�
V
n

i

�
: (3.13)

On the other hand, the ODEs for the gates are discretized by Forward Euler, and

again evaluated at the average of the two previous voltage values,

(gp)
n+1
i;j;k � (gp)

n
i;j;k

�t
= �gp

�
V
n

i

� �
1� (gp)

n
i;j;k

�� �gp
�
V
n

i

�
(gp)

n
i;j;k: (3.14)

Equations (3.13) and (3.14) together give the scheme.

Being aware of when the stimulus takes place, a time-step factor dtfac is

introduced to speed up the computation here. That is, �texpl (satisfying the CFL

condition) is used in a small time interval containing the moment stimulus happens,

and a larger time step �tbig = dtfac � �texpl is used elsewhere. In the simulations,

we used dtfac = 1 and dtfac = 2, denoting the schemes as DF1 and DF2. They

produce similar results.

Stability, Consistency and Convergence Results

To prove convergence of the nonhomogeneous di�ernce scheme, it is enough to

establish stability of the homogeneous equation, along with the correct consistency.

All of the contributions of the nonhomogeneous term will be contained in the

32



truncation error term. Thus, when we discuss stability of a nonhomogeneous

di�erence scheme (3.12) or (3.13), we consider the stability of the associated

homogeneous scheme.

The homogeneous equation of the one dimensional cable equation is a di�usion

equation, which for simplicity we write as Vt = bVxx. The associated DuFort-Frankel

scheme is

V n+1
i � V n�1

i = 2b�(V n
i+1 � (V n+1

i + V n�1
i ) + V n

i�1);

where � = �t=�x2. Rearranging the terms yields

(1 + 2b�)V n+1
i � (1� 2b�)V n�1

i = 2b�(V n
i+1 + V n

i�1):

To study stability via the von Neumann approach, we substitute V n
i = gne|m�x�,

where | =
p�1 is the imaginary unit, to get

(1 + 2b�)g2 � (1� 2b�) = 2b�
�
e|�x� + e�|�x�

�
g;

which implies

g� =
2b� cos(�x�)�

p
1� 4b2�2sin2(�x�)

1 + 2b�
:

The scheme is not dissipative since g�(�) = �1. For stability, we need to show that

jgj � 1 for all �.

Now, if 1 � 4b2�2sin2(�x�) � 0, then jg�j � 2b�j cos(�x�)j+1
1+2b�

� 2b�+1
1+2b�

= 1. On

the other hand, if 1 � 4b2�2sin2(�x�) < 0, then jg�j2 = (2b� cos(h�))2+4b2�2 cos2(h�)�1
1+2b�

=

4b2�2�1
(1+2b�)2

= 2b��1
1+2b�

� 1. Finally, when 1�4b2�2sin2(�x�) = 0, then jg�j � 2b�j cos(�x�)j
1+2b�

<

1.

Thus, we have stability for any value of �, so the DuFort-Frankel scheme is

unconditionally stable.
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Next we examine consistency. We rewrite the scheme as

V n+1
i � V n�1

i

2�t
= b

V n
i+1 � 2V n

i + V n
i�1

�x2
� b

V n+1
i + V n�1

i � 2V n
i

�x2
;

and by Taylor expansions we see that it approximates

Vt +
�t2

6
Vttt = b

�
Vxx +

�x2

12
Vxxxx

�
� b

�
�t2

�x2
Vtt +

�t4

12�x2
Vtttt

�
:

Assuming Vtt, Vttt, Vtttt, and Vxxxx remain bounded as �x, �t ! 0, the scheme

approximates the Telegrapher's equation Vt = bVxx � b(�t=�x)2Vtt. It will be

consistent with the di�usion equation Vt = bVxx only if �t=�x ! 0 as �x;�t! 0.

At the same time, we see that the order of the scheme is O(�t2+�x2+�t2=�x2),

which is dominanted by �t2=�x2, provided Vtt, Vttt, Vtttt, and Vxxxx remain bounded.

Finally, we consider the scheme (3.14) applied on the ODEs for the gates and show

that �t must be restricted by certain �tcutoff value to maintain stability. Rewrite

(3.14) as

(gp)
n+1
i;j;k = (gp)

n
i;j;k +�t

�
�gp
�
V
n

i

� �
1� (gp)

n
i;j;k

�� �gp
�
V
n

i

�
(gp)

n
i;j;k

�
=

�
1��t

�
�gp
�
V
n

i

�
+ �gp

�
V
n

i

���
(gp)

n
i;j;k +�t�gp

�
V
n

i

�
:

Stability is guaranteed if

j1��t(�gp + �gp)j � 1 (3.15)

for all gates gp. In ionic models, �gp 's and �gp 's, expressed explicitly by messy

equations of voltage V , are bounded since they all depend continuously on V in

a physical range of [bVmin; bVmax]. Thus, the inequality (3.15) holds for small �t < 1.

In our simulations, a strong external stimulus Istim is applied to certain small

region of the cable, during a short time, to stimulate propagation of the voltage V .

This makes V in the stimulated region fall into a bigger range [Vmin; Vmax] than the

ideal range [bVmin; bVmax]. Therefore, we have to restrict the time step �t to be smaller.
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We therefore de�ne

�tcutoff := min

�
2

�gp + �gp

�
< 1; 8V 2 [Vmin; Vmax] and all gp's; (3.16)

and require �t � �tcutoff for stability. It turns out that the value �tcutoff = 0:01ms

is su�cient for stability of the ODEs of the Luo-Rudy model. This restriction is

applied to time steps of the Dufort-Frankel scheme, as well as to time steps of all the

other time-steppers we use.

Summarizing our discussion above yields the next theorem

Theorem 3.3. The scheme (3.13-3.14) is stable if the time step �t � �tcutoff . It is

consistent with the di�usion equation when �t=�x ! 0 as �t, �x ! 0. Moreover,

the scheme is of order O(�t2 + �x2 + �t2=�x2) provided Vtt, Vttt, Vtttt, and Vxxxx

remain bounded.

3.3 Runge-Kutta (RK) Schemes

Runge-Kutta is a large family of methods for the numerical solution of ODE systems

dy

dt
= f(t; y); y(t0) = y0:

These methods can be expressed in the form [60]

yn+1 = yn +
sX

i=1

biki

ki = f

 
tn + cih; yn + h

i�1X
j=1

aijkj

!

They are single-step, multi-stage methods, with s stages ki; i = 1; :::; s. Each method

can be described by a Butcher tableau, which puts the coe�cients of the method in a

table as follows:
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c1 a11 a12 � � � a1s

c2 a21 a22 � � � a2s
...

...
...

. . .
...

cs as1 as2 � � � ass

b1 b2 � � � bs

The family of Runge-Kutta methods includes low and high order, explict and implicit,

non-adaptive and adaptive integrators.

We tested the following non-adaptive, explicit and implicit methods:

� Classical explicit fourth-order method (RK4)

� Implicit second-order method (RK2imp)

� Implicit fourth-order method (RK4imp)

In additon, we tested several adaptive embedded Runge-Kutta methods. Em-

bedded methods are designed to produce an estimate of the local truncation error

of a single Runge-Kutta step, and as result, allow control of the error via adaptive

stepsize. This is done by computing with two s-stage methods, of orders p and p-1,

which use the same values for the stages ki thus avoiding additional computational

cost. Representing the lower-oder step as

y�n+1 = yn + h
sX

i=1

b�i ki;

with ki same as for the higher order method, then the error can be estimated as

en+1 = yn+1 � y�n+1 = h
sX

i=1

(bi � b�i )ki;

which is of order O(h; p). The Butcher Tableau for this kind of method is
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c1 a11 a12 � � � a1s

c2 a21 a22 � � � a2s
...

...
...

. . .
...

cs as1 as2 � � � ass

b1 b2 � � � bs

b�1 b�2 � � � b�s

The adaptive embedded methods we use are the following:

� The Bogacki-Shampine method (RK23) [8]

0

1/2 1/2

3/4 0 3/4

1 2/9 1/3 4/9

2/9 1/3 4/9 0

7/24 1/4 1/3 1/8

� The Runge-Kutta-Fehlberg(4,5) method (RK45) [16]

0

1/4 1/4

3/8 3/32 9/32

12/13 1932/2197 -7200/2197 7296/2197

1 439/216 -8 3680/513 -845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40

25/216 0 1408/2565 2197/4104 -1/5 0

16/135 0 6656/12825 28561/56430 -9/50 2/55

� The Cash-Karp(4,5) method (RKCK) [13]
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0

1/5 1/5

3/10 3/40 9/40

3/5 3/10 -9/10 6/5

1 -11/54 5/2 70/27 35/27

7/8 1631/55296 175/512 575/13824 44275/110592 253/4096

37/378 0 250/621 125/594 0 512/1771

2825/27648 0 18575/48384 13525/55296 277/14336 1/4

� The Dormand-Prince(8,9) method (RK8PD) [15]

All these methods are e�ciently implemented in the GNU Scienti�c Library (GSL

1.10) [21] from GNU, which we employ in our codes.

Stability of Explicit Runge-Kutta Methods

Consider the general case of p-stage Runge-Kutta method de�ned by the Butcher

Tableau

�!c A
�!
b T

Let Y be a vector made up from the p-stage values which satis�es

Y = y0 +�t AY = y0 + zAY :

Solving for Y , gives Y = (I � zA)�1y0, from which we obtain

y1 = y0 +�t
�!
b TY = y0 + z

�!
b T (I � zA)�1y0 = R(z)y0;

where

R(z) = 1 + z
�!
b T (I � zA)�1
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is called the stability function. To achieve stability of the method, we want jR(z)j < 1.

R(z) can be evaluated as the exponential series truncated at the zs term,

�!
b TAk�11 =

�!
b TAk�1�!c =

1

k!
; k = 1; 2; :::; p:

Therefore, the stability function for each p is as follows [47]:

R(z) =

8>>>>>>>>><>>>>>>>>>:

1 + z; p = 1

1 + z + 1
2
z2; p = 2

1 + z + 1
2
z2 + 1

6
z3; p = 3

1 + z + 1
2
z2 + 1

6
z3 + 1

24
z4; p = 4

...

(3.17)

The stability regions of the stability functions in (3.17) are shown in Figure 3.1.

Figure 3.1: Stability regions of Explicit Runge-Kutta methods [47]
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3.4 Library Method

It turns out that evaluating the ionic currents is very expensive and, as mentioned

near the end of x3.2, it requires time-steps no larger than 0:01ms. This penalizes

all schemes, especially implicit and high order ones. In an attempt to reduce run

times, we pre-compute all the �(V ); �(V ) coe�cients in the range [�100; 200] with
�V = 0:001, and store them in a direct access, binary �le (37 MB size), which is

loaded into memory at run time. Then, values of �(V n
k ); �(V

n
k ) at any V

n
k are found

by interpolation. This approach has come to be known as the library method [52].

In Figure 3.2 the timings of all eleven time integrators are compared without and

with pre-computed library. Clearly, pre-computing has high payo�, reducing CPU

time to almost half on each scheme, with no loss of accuracy (they produce the same

propagation speed, Vmax; fdV=dtgmax, and APD).

All other computations discussed here use the pre-computed library, whenever

possible. A situation in which pre-computing is not feasible occurs in simulations with

di�erent value of the parameter [K]o in di�erent regions, described in x5.1.5, x5.2.2
and x5.2.3. This parameter enters several of the coe�cients �(V ); �(V ), making

pre-computing them impossible.

3.5 Comparison of Eleven Serial Solvers

Serial implementation results and comparison of eleven numerical schemes have been

reported in our papers [28, 29]. These schemes were discussed in the previous sections

of this chapter.

In these experiments a resistivity value of Ri = 150 k
cm was used, which is a

thousand times larger than a realistic one, in order to speed up the computations, and

they were still very long! With this higher resistivity, the action potential propagates

much slower (with speed � 3 cm=s instead of � 100 cm=s), so a single stimulus
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Figure 3.2: Timings of all eleven schemes on 10mm cable, without
(red) and with precomputed library (cyan). Precomputing achieves

almost 100% speedup on most schemes.

spreads much further apart along the cable, unlike the case with the physical value

of 150 
cm.

All these simulations were done on a 50 mm cable, on the same machine, with

normal parameter values (see Table 5.1), and mesh size �x = 8 �m, resuliing in

6250 control volumes. In all schemes, the time step �t was restricted to be less than

0:01 ms to ensure stability of the ODE system (see discussion near the end of x3.2).
Comparison of the timings of all eleven solvers is shown in Figure 3.3. Note that

timings are in minutes of CPU time!

Our numerical experiments show that all the high order schemes produce identical

voltage history (action potentials), and identical values for the biological quantities.

Among them, the explicit adaptive 4th order solver rkck is the most e�cient, followed

closely by rk45. At the other end, the implicit non-adaptive 4th order rk4imp is by

far the worst, with no redeeming features.

The low order schemes STS, Eu, DF are much faster than the high order ones, by

factors of 10 to 25! , and STS4 (i.e. STS with N = 4, � = 0:07) is the most e�cient
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Figure 3.3: Timings of all eleven schemes on 50mm cable.
Non-adaptive (red) and adaptive (cyan) schemes.

of all. However, in the unphysical case Ri = 150 k
 cm, they produce upstrokes

somewhat delayed (by 20 - 50 ms at the end of 50mm cable), and slightly lower

propagation speed than the high order ones. This does not happen in the physical

case of Ri = 150 
 cm.

Among high order solvers, the adaptive ones outperform the non-adaptive by a

factor of 2 or more, and rkck is best among them. When adaptivity cannot be used,

as is the case in parallel computations (Chapter 4), then rk4 would be best among

high order solvers.

In view of the fact that evaluation of the source restricts the time-step to

�t � 0:01, the implicit 2nd order solver rk2imp performs surprisingly well, being

competitive with rk4, whereas rk4imp is hopelessly slow.
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Chapter 4

PARALLEL COMPUTING

The di�culties in numerical simulations of propagation of action potentials arise

primarily from the following:

� The size of, for instance, human heart cells, varies from 30 to 130 �m, whereas

the length of a cardiac cell bundle ranges from 10 to 20 cm. Therefore the

simulated domain consists of tens of thousands of biological cells, and each cell

needs to be discretized by several numerical control volumes.

� The e�ective di�usion coe�cient, 1=(CmRa), is high (of the order of 1 cm
2=sec).

It requires very small time steps to resolve the fast evolution of the voltage.

These issues make the computational cost for a realistic simulation dramatically high.

We therefore turn to parallel computing for help.

Parallel computing operates on the principle that large problems can often be

divided into smaller ones, which are then solved concurrently ("in parallel") on

many processors. There are several di�erent levels of parallel computing: bit-level,

instruction level, data, and task parallelism. Parallelism has been employed for many

years, mainly in high-performance computing, but interest in it has grown since the

late 1980's due to the physical constraints preventing frequency scaling on single

processors. As power consumption (and consequently heat generation) by computers
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has become a concern, parallel computing has become the dominant paradigm in

computer architecture, mainly in the form of multicore processors and multiprocessor

clusters [58].

4.1 Classical Performance Analysis

Parallel computing is a powerful tool to accelerate scienti�c computations. However,

analyzing the performance of parallel programs is much more challenging than that

of serial ones. We will introduce several commonly used quantities, as well as some

important theories, for performance analysis of parallel algorithms before proceeding

to analyze the performance of parallel algorithms applied in solving our problem.

De�nitions and theoretical results described in this section can be found in many

resources. We refer interested readers to [2, 4, 23, 58] for more details.

4.1.1 Speedup

A core concept in parallel computing is speedup, which compares the execution

of the parallel program with its serial cousin. Two types of speedup, absolute and

relative, will be de�ned for completeness of this section but only the relative speedup

will be used later.

De�nition 4.1. (Absolute Speedup [2, 23]) Let TA be the wall clock time of the serial

implementation and TP be the wall clock time of the parallel implementation using P

processors. The absolute speedup SPA is de�ned to be

SPA =
TA
TP

: (4.1)

The absolute speedup has signi�cant theoretical meaning. However, it is di�cult,

even impossible, to measure in most cases. Absolute speed compares the parallel

algorithm directly to the fastest serial one, which most likely is not available, and it
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is highly a�ected by the implementation, machine architecture, compiler, etc. Thus,

an alternative, the relative speed, is much more useful in practice.

De�nition 4.2. (Relative Speedup [23]) Let T1 be the wall clock time of the code

running on a single processor, and TP again the wall clock time of the implementation

over P processors. The relative speedup w.r.t one processor is de�ned as

S1
P =

T1
TP

: (4.2)

Similarly, if we let Tk be the wall clock time of the code running on k < P processors

and TP the time on P processors, then a generalized relative speedup on k processors

is de�ned as

Sk
P =

Tk
TP

; (4.3)

In this work we use relative speedup for all performance analysis results for

convenience. To simplify notations, the relative speedup is denoted as S, SP , or

just speedup from now on.

The next de�ntion de�nes linear and super-linear speedups, which are the best we

can expect for any parallel algorithm.

De�nition 4.3. Speedup is considered to be linear whenever

SP � P; (4.4)

and it is called super linear whenever

SP > P: (4.5)

When neither one of these apply, the speedup is said to be nonlinear.

Linear speedup is the best we can expect for most parallel algorithms. Super-

linear speedup is usually achieved from the improvement of hardware capability. For
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instance, a common case of super-linear speedup, pointed out in [23], arises when

large data sets cannot �t into single cache but can �t into multiple cashes when

more processors are used. Consequently, provided the algorithm has linear speedup,

combination of reduced memory access time and additional speedup may produce

superlinear speedup.

Very few algorithms are capable of achieving linear, much less super-linear

speedup, due to the fact that communication between processors, which can hardly

be avoided, contributes more in the overhead and signi�cantly slows down the

computation.

Typically, good parallel algorithms achieve nearly linear speedup for small number

of processors, which 
attens out for large number of processors. As it will be

demonstrated later, our parallel algorithms behave exactly this way.

4.1.2 E�ciency

The e�ciency of an algorithm is another primary quantity for performance analysis.

De�nition 4.4. (E�ciency [2, 23])The e�ciency of an algorithm using P processors

is de�ned as

EP =
SP
P
: (4.6)

Thus, e�ciency is speedup per processor. It estimates how well-utilized the

processors are in solving the problem, compared to how much e�ort is expended in

communication and synchronization [2]. From its de�nition, it is clear that e�ciency

always stays between 0 and 1. Linear speedup corresponds to the highest e�ciency

EP = 1. E�ciency close to 0 indicates that most e�ort of processors is wasted in

communication and synchronization.
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4.1.3 Scalability

Scalability of a parallel algorithm refers to its capacity to utilize more processors

e�ectively. Later we will look closely at what problem parameters are playing a

signi�cant role in a�ecting the scalability of the Parareal Algorithm.

De�nition 4.5. (Scalability [23]) An algorithm is scalable if there is a minimal

e�ciency � > 0 such that given any problem of size N , there is a number of

processors P (N), which tends to in�nity as N tends to in�nity, such that the e�ciency

EP (N) � � > 0 as N is made arbitrarily large.

Scalability describes the performance of algorithms as the problem size is varied,

in contrast to speedup which describes the performance of algorithms as the number

of processors P varies. Scalability analysis provides a lower bound of the e�ciency of

the algorithm by choosing P dependening on the problem size [23].

Once again, two types of scalability, strong and weak, are of practical interest. In

the case of weak scalability, the problem size is allowed to change as P is varied. On

the other hand, in the case of strong scalability, all parameters used to specify the

problem size are �xed as P is increased [23].

In general, scalability analysis is particularly useful for parallel algorithms which

do not posses the property of linear speedup by design. It provides a method to

�nd an optimal number of processors, if it exists, to maximize the performance of

algorithms [23].

4.1.4 Theoretical Results

It is time to present some classical results about the performance of parallel

algorithms. Two such results are Amdahls law and Gustafsons law.
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Amdahl's law

There exist various statements of Amdahl's law and we select two most popular ones

to present, one in terms of the expected speedup and the other in terms of the total

parallel execution time. Both statements can be found in [23].

Let f denote the sequential fraction of the computation, and Ts be the execution

time of a sequential run of the algorithm, then Amdahls law is stated as

Law 4.1. (Amdahl's law v1 [4]) The speedup SP , given P processors, is

Sp =
1

f + (1� f)=p
: (4.7)

Next, if we let TP1 denote the execution time of the parallelized portion of the

algorithm using a single processor and Ts denote the execution time of the sequential

portion of the algorithm, then Amdahl's law can equivalently be stated as

Law 4.2. (Amdahl's law v2 [4]) The wall clock time of the parallel execution, T (P ),

of the algorithm given P processors is

T (P ) = Ts +
TP1
P

(4.8)

Simple mathematical arguments on above de�nitions lead to the following useful

insights of Amdahl's law.

Remark 4.1. A perfectly-linear parallelizable algorithm is one in which f tends to 0,

since limf!0 SP = P .

Remark 4.2. The maximum speedup is limited by f�1, since limP!1 SP = 1
f
.

A good example representing Amdahl's law is borrowed from [58] and shown in

Figure 4.1. It shows that the speedup of a parallel program is limited by its parallel

portion. All speedup curves shown in the �gure increase to their peaks and 
atten out

afterwards. Their peaks vary and highly depend on parallel portions of the program.
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For instance, if 90% of the program can be parallelized, that is, 10% of the program

must be executed sequentially, the maximum speedup using parallel computing would

be 10x no matter how many processors are used [58].

Figure 4.1: A graphical representation of Amdahl's law [58]

Gustafson's Law

Gustafson's Law (also known as Gustafson-Barsis' Law) is another law in computing,

closely related to Amdahl's law.

Law 4.3. (Gustafson's Law [22]) Gustafson's law de�nes the scaled speedup by keeping

the parallel execution time constant and adjusting P as the problem size N changes

SP;N = P + �(N) � (1� P ); (4.9)

where �(N) is the non-parallelizable fraction of the normalized parallel time. Assum-

ing that the serial function �(N) diminishes with the problem size N , then the speedup

approaches P as N approaches in�nity as desired in a linear scaling.

Gustafson's law reevaluates Amdahl's law in a primary aspect: Amdahl's law

assumes the problem size is �xed and the sequential part of a program does not

change with respect to the number of processors involved, whereas Gustafson's Law
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has no such assumption, suggesting to adjust the problem size and use all available

computing resources to solve the problem in given time.

Gustafson's law leads to a new path to select or reformulate problems so that

solving a larger problem in the same amount of time would be possible. "In particular,

the law rede�nes e�ciency as a need to minimize the sequential part of a program,

even if it increases the total amount of computation" [59].

Another example for Gustafson's Law is borrowed from [59] and shown in Figure

4.2. Di�erences between Amdahl's law and Gustafson's law can be clearly observed

from Figure 4.1 and 4.2. Speedups in Figure 4.2 are straight lines with slopes 1��(N),

as shown in equation 4.9.

Figure 4.2: A graphical representation of Gustafson's Law [59]

4.1.5 Limitations of Classical Performance Analysis

It is pointed out in [23] that classical performance analysis has some practical

problems, such as that a priori knowledge of the execution time of the sequential

portion of the algorithm must be known. A new improved Karp-Flatt metric dealing

with these issues was proposed by Alan Karp and Horace Flatt in 1990, and discussed

in [23]. However, classical performance analysis is enough for this work, and we do

not discuss the issue further since it is not the point of this work. Interested readers

are referred to [23] for more details.
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4.2 Space Parallelization (SP)

The most straightforward way to use multiple processing elements simultaneously to

solve our problem is accomplished via domain decomposition, namely by breaking the

spatial domain (the cable) into pieces so that each processor can execute its part of

the algorithm on one piece simultaneously with the others. Since, by nature, the

cable is thin and long, we only need to decompose it in one direction (x-direction).

This requires synchronization at each time step, which is possible only when

all processors execute time steps of equal length. This is problematic for adaptive

schemes, since local adaptivity may lead to unequal time steps among processors.

However, in x4.4, we will describe a way to use even adaptive integrators in parallel

within the Parareal Algorithm.

All non-adaptive numerical shemes have been parallelized for distributed com-

puting via message passing, by (spatial) domain decomposition and implemented in

modular code, written in C, using the MPI library for message passing.

We follow the Master-Workers paradigm. The full domain (entire cable) is divided

evenly into Nw segments, with Nw the number of desired worker MPI processes

(speci�ed by the user at run-time). On a multiprocessor computer, each MPI process

is executed on a separate processor. The master MPI process assigns each segment

to one worker MPI process. At each time-step, worker processes exchange their

boundary values with their adjacent neighbors; thus, all workers evolve at the same

pace. The results are collected by the master process when the computations on all

workers are �nished.

Results of numerical experiments and comparison of solvers using space-only

parallelization we have reported in [30] and are presented below.

Remark 4.3. By requiring synchronization at every time step, i.e., updating and

exchanging the boundary values at faces of control volumes before evolving to the

next time step (for explicit schemes) or the next iteration (for implicit schemes), the

numerical solution Us obtained by serial implementation and the numerical solution
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Up obtained by space parallized implementation of a certain time stepping scheme

satisfy the relation

jjVs(x; t)� Vp(x; t)jj � eps; for all t 2 (t0; T );

where eps is the machine accuracy.

Remark 4.4. As predicted by Amdahl's law, performance of parallelism by spatial

domain decomposition deteriorates quickly for large number of processors. Therefore,

there exists an optimal number of processors Nopt, depending on the selected solver,

such that the performance of spatial parallelization is maximized.

4.3 Time Parallelization - the Standard Parareal

Algorithm (SPA)

After spatial parallelization, the bottleneck in time evolving problems is the time

stepping. As the new generation of parallel computers/clusters provides more

processors than can be �lled up e�ciently with space-only parallelization, it is natural

to seek algorithms to parallelize in the time direction.

4.3.1 The Parareal Algorithm

The Parareal algorithm, �rst proposed by Lions, Maday, and Turinici in 2001 [31, 35],

appears to be an e�ective algorithm for computing the numerical solution for general

systems of ODEs of the form

u0 = f(t; u); u(0) = u0; t 2 
 = (0; T ): (4.10)

where f : RM �! RM and u : R �! RM .
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Similar to the idea of spatial domain decomposition, they introduced a decompo-

sition of the temporal domain into time segments. Also, in the spirit of predictor-

corrector schemes, they introduced both coarse and �ne time integrators. Their

solutions are then combined in a corrector scheme which allows for the coarse solution

to be updated iteratively while preserving the accuracy and stability of the time

discretization. The coarse time integrator approximation and the application of the

corrector scheme are purely serial in the implementation. The �ne approximations are

serial only within each time segment, thus allowing for parallel execution of the �ne

solver on each of these time segments. The corrector scheme is then used to update

the coarse solver approximation using the results of the �ne approximations on each

segment, which have been computed concurrently (in parallel), and this procedure is

iterated until convergence.

The Parareal Algorithm is completely problem independent and leaves much


exibility in the choice of time discretization and solver. It is important to note that

the algorithm can never exceed the accuracy or stability of the numerical schemes

being employed. Also, when we talk about the convergence of the algorithm, we do

so in terms of its approach towards the solution that would have been obtained if the

problem was solved directly using the �ne solver over the entire temporal domain.

Another aspect of this algorithm, which makes it especially promising for real time

computations, and in stark contrast to the more traditional spatial decompositions, is

that in a true parallel implementation the algorithm requires a very minimal amount

of communication between any of the processors carrying out the �ne approximations.

A brief description of the Standard Parareal Algorithm (SPA) is as follows. We

divide the time interval 
T = [0; T ] into N time segments 
n = (tn; tn+1); n =

0; 1; :::; N � 1, with 0 = t0 < t1 < ::: < tN�1 < tN = T and �tn := tn+1 � tn.

Two propagation operators, G and F , are required. The coarse operator G(t2; t1; u1)

is implemented sequentially to provide a rough approximate solution U2 of equation

(4.10) at time t2 with initial condition U1 = u(t1) at time t1. On the other hand,

the �ne operator F (t2; t1; u1) is implemented in parallel within each segment 
n to
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improve the accuracy. The algorithm starts with initial approximations U 0
n; n =

1; 2; :::; N , at times t1; t2; :::; tN obtained from the sequential computation of U 0
n+1 =

G(tn+1; tn; U
0
n), with given initial condition U 0

0 = u(t0), and then performs for k =

0; 1; 2; ::: the correction iteration

Uk+1
n+1 = G(tn+1; tn; U

k+1
n ) + F (tn+1; tn; U

k
n)�G(tn+1; tn; U

k
n); (4.11)

until a pre-speci�ed tolerance is satis�ed or the maximum number of iterations is

reached. A pseudo-code implementing SPA can be found in [50] and is shown in

Table 4.1 below.

Table 4.1: Standard Parareal Algorithm [50]

�00  u0
for i = 0 : N � 1 do

�0i+1  G(�0i+1; ti; �
0
i )

end for
solve F (�0i+1; ti; �

0
i ) concurrently on i = 0; :::; N � 1 processors with one �ne

subproblem per processor.
k  0
while true do

�k+1
0  �k0
for i = 0 : N � 1 do
solve G(�k+1

i+1 ; ti; �
k+1
i )

�k+1
i+1  G(�k+1

i+1 ; ti; �
k+1
i ) + F (�ki+1; ti; �

k
i )�G(�ki+1; ti; �

k
i )

end for
if convergence then
break

end if
solve F (�k+1

i+1 ; ti; �
k
i ) in parallel on i = 0; :::; N � 1 processors with one �ne

subproblem per processor.
k  k + 1

end while
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4.3.2 Properties of the Parareal Algorithm

For easy reference, we list here as remarks the main properties of SPA, already

mentioned in the previous section.

Remark 4.5. In contrast to more traditional spatial decomposition methods, described

in x4.2, the Parareal Algorithm is a pure parallel algorithm which requires no

communication between processors carrying out the �ne propagator F [50, 23].

Remark 4.6. Provided G and F are convergent and stable for their own chosen

timesteps �T and �t (usually, �T >> �t), then, for iteration k (with k = 0 being

the �rst iteration)

jjUs � Uspjj � eps; t 2 (t0; k�T );

where Us is the numerical solution obtained by serial F , Usp is the numerical solution

obtained by the SPA, and eps is the machine accuracy. This means that

jjUs � Uspjj � eps; t 2 (t0; T );

at N � 1 = T�t0
�T
� 1 iterations. Moreover, at ieration k � N � 1,

jjUs � Uspjj � eps; t 2 (t0; tk):

Basically, it means that the iterative correction formula (4.11) converges towards

the serial solution obtained by using the same �ne propagator F on the same

discrete grids in time (and space). A series of intermediate values Un satis�es

Un+1 = F (tn+1; tn; Un) in �nite number of iterations. That is, the approximation

at the time point tn will have achieved the accuracy of the F -propogator [50].

Remark 4.7. SPA is independent of the choice of propagators G and F . The only

requirement is that the chosen methods be convergent and stable for the speci�ed

timesteps �T and �t [50].
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4.3.3 Convergence, Stability and Performance of SPA

Convergence and stablility as well as performance analysis of SPA are important to

us. A nice general overview of all of the basic mathematical results is provided in

[50]. Interested readers are re�erred to [6, 18, 17, 34, 51] for a thorough analysis of

mathematical results on convergence and stability.

Convergence Results

Two primary convergence results were published in [17, 34]. We will state both of

them, starting with the one provided by Gander and Hairer in [17].

Assuming all the time segments are of the same size, �tn = �t := T=N; n =

0; 1; :::; N�1, and that F is the exact solution, i.e., F (tn; tn�1; U
k
n�1) = '�tn�1(U

k
n�1),

the evaluation problem on each time segment is considered

u
0

n(t) = f(t; un(t)); t 2 (tn; tn+1); un(tn) = Un; n = 0; 1; :::; N � 1;

where the initial values Un on the time segment 
n coincides with the solution of

(4.10) on 
n, i.e., Un satis�es the system of equations

U0 = u0; Un = '�tn�1(Un�1); n = 0; 1; :::; N � 1;

where '�tn�1 denotes the solution of (4.10) with initial condition U after time �tn.

Another assumption is that the di�erence between the approximate solution

obtained by G and the exact solution can be expanded for �t small

F (tn; tn�1; x)�G(tn; tn�1; x) = cp+1(x)�t
p+1 + cp+2(x)�t

p+2 + ::: (4.12)

Expansion (4.12) can be achieved if, for example, the right hand side function f is

smooth enough, and G is a Runge-Kutta method.
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With the �nal assumption that G satis�es the Lipschitz condition

jjG(t +�t; t; x)�G(t +�t; t; y)jj � (1 + C2�t)jjx � yjj; (4.13)

the following convergence theorem is proved in [17].

Theorem 4.1. (Convergence, Gander and Hairer [17])

Let F (tn; tn�1; U
k
n�1) = '�tn�1(U

k
n�1) be the exact solution on time segment 
n�1, and

let G(tn; tn�1; U
k
n�1) be an approximate solution with local truncation error bounded

by C3�t
p+1, and statisfying (4.12), where the cj; j = p+ 1; p+ 2; ::: are continuously

di�erentiable, and assume that G satis�es the Lipschitz condition (4.13). Then, at

iteration k of the Parareal Algorithm (4.10), we have the bound

jju(tn)� Uk
n jj �

C3

C1

(C1�t
p+1)k+1

(k + 1)!
(1 + C2�t)

n�k�1
kY

j=0

(n� j)

� C3

C1

(C1tn)
k+1

(k + 1)!
eC2(tn�tk+1)�tp(k+1): (4.14)

A similar convergence result is obtained by Maday, et.al [34] by introducing the

propagator " (4.13) de�ned by u(t) = "t�t0(t0; uo) = "t�� (�; u(� )) for any � � t0. The

existence of such a propagator follows, e.g. from the hypothesis on f :

jjf(t; x)jj � C(1 + jjxjj); jjf(t; x)� f(t; y)jj � Cjjx� yjj;

and, in addition, the following stability result:

jj"� (t; x)� "� (t; y)jj � (1 + C� )jjx� yjj: (4.15)

With assumptions that propagator G and F satisfy the semi-group property

Gt�t0(t0; u0) = Gt�� (�;G��t0(t0; u0)); Ft�t0(t0; u0) = Ft�� (�; F��t0(t0; u0));
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and, for any � � t0

jj�F� (t; x)jj � C��(1 + jjxjj); jj�G� (t; x)jj � C��(1 + jjxjj); (4.16)

where �F and �G are the di�erences �F = " � F and �G = " � G, respectively, one

can show from (4.15) - (4.16) that

jjF� (t; x)� F� (t; y)jj � (1 + C� )jjx� yjj

and

jjG� (t; x)�G� (t; y)jj � (1 + C� )jjx� yjj;

with a constant, still denoted by C, as any constant that does not depend on �t, nor

� , � or �.

Eventually, the following theorem is obtained under these assumptions by Mayday,

Ronquist and Sta� in [34].

Theorem 4.2. (Convergence, Maday, Ronquist, and Sta� [34])

Assume that the discrete propagators F and G satisfy (4.15) and (4.16). Assume also

that k � K with some �xed K � N=2 and that we have a constant C dependent of

u0, T and k. The error between the exact solution and the solution provided by the

Parareal Algorithm (4.14) satis�es

jjUk
n � u(tn)jj � C(�k + �); 8tn < T; (4.17)

Stability Results

Stability is studied by Bar, Ronquist and Sta� in [6, 51]. Stability results for an

autonomous di�erential equation are obtained by Sta� and Ronquist in [51]. More

general discussion can be found in [6].
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Theorem 4.3. (Stability, Sta� and Ronquist [51])

Assume we want to solve the autonomous di�erential equation

y0 = �y; y(0) = y0; 0 > � 2 R;

and that �1 � r; R � 1 where r = r(��t) is the stability function for the �ne

propagator F using time step �t and R = R(��T ) is the stability function for the

coarse propagator G using time step �T . Then the Parareal Algorithm is stable for

any number of segments N and any number of iterations k � N as long as

r � 1

2
� R � r + 1

2
; (4.18)

where r = r(��t)s and s = �T=�t.

It is still not obvious from (4.18) which solvers will ful�ll this stability condition.

The next theorem gives some insight by considering a special case [51].

Theorem 4.4. (Stability, Sta� and Ronquist [51])

Assume we want to solve the autonomous di�erential equation

y0 = �y; y(0) = y0; 0 > � 2 R;

using the Parareal Algorithm. Assume also that the system is sti�, meaning that

z = ��T << �1, and that the �ne propagator is close to exact. Then the "stability

function" can be written as

H(n; k; R) = (�1)k
0@ n� 1

k

1ARn;

and stability is guaranteed if the following property is ful�lled:

R1 = lim
z!�1

jR(z)j � 1

2
: (4.19)
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Performance Analysis

Calculation of the speedup and e�ciency of the Parareal algorithm, in both cases of

strong and weak scalings, is standard and straightforward. Our results agree with

those reported by Samaddar, Newman and Sanchez in [45]. To be consistent, we

borrow their notations here.

It is worth pointing out that both implementations share the same idea attempting

to incorporate space-parallelization into the framework of the Parareal Algorithm to

accelerate computations. However, their implementation is quite di�erent from ours

in some major aspects.

First, their implementation is via scripts external to the code used to solve a

problem, whereas ours is built within the code. Second, one important feature

of their implementation is to break a large MPI job to many small ones running

concurrently, each demanding only small amount of processors. This feature is

useful, for example, when running the MPI job on a cluster accessible to many

users. However, intermediate values, produced by previous MPI jobs, must be saved

onto disk and loaded later into memory by future MPI jobs as starting values, thus

incurring performance penalties. Our implementation does not have this feature; it

allocates all processors at the moment the MPI job is submitted; thus no additional

I/O operations between memory and hard-disk are required.

We �rst consider the case of strong scaling, in which the problem is solved up

to �xed �nal time T . Let T ser
G (T ) and T ser

F (T ) be the wallclock times to solve the

problem serially up to time T using propagators G and F , respectively. De�ne the

parameter � as the ratio of these two times,

� =
T ser
F (T )

T ser
G (T )

; (4.20)

Clearly � > 1 since G is the cheaper and faster propagator.

Let N be the total number of processors. It is the number of time segments as

well, since the �ne propagator F , running in parallel, requires one processor per time
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segment of length �T = T=N , assumming the whole simulation time perild 
T is

divided evenly into segments of the same length.

We denote by ks(N), a function of N , the number of iterations the Parareal takes

until converges. It is not hard to see that the total consumed time to solve the

problem is

T s
sp = Ks(N)

�
T ser
G (T ) +

T ser
F (T )

N

�
: (4.21)

From equation 4.21, we obtain an estimate of the speedup and e�ciency in the

case of strong scaling.

Proposition 4.1. (Speedup and e�ciency for strong scaling)

The strong scaling parallel speedup factor (or gain) for the Parareal Algorithm is given

by:

Ss
sp =

T ser
F (T )

T s
sp

=

�
ks(N)

�
1

�
+

1

N

���1
; (4.22)

and the associated e�ciency is

Es
sp =

Ss
sp

N
=

�
ks(N)

�
N

�
+ 1

���1
: (4.23)

Note that the typical strong scaling for spatial parallelization, Sp(N) = N is only

recovered when � !1 and ks(N) = 1. But in the parareal case, ks(N) is a function

of N and � is �nite. E�ciency of the parareal will depend on the value ks(N), which

depends on the choice of the coarse solver G. But even without knowing ks(N) at this

point, several things can be learnt from this model. First, � seems to roughly set the

maximum number of processors for which SPA yields any net parallel gain. For N

much larger than this value, the serial part of the algorithm dominates the calculation

and, as predicted by Amdahls law, performance deteriorates quickly. Secondly, a net

parallel gain is obtained only for as long as ks(N) < N .
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Proposition 4.2. (Maximum speedup)

The speedup, assuming k � 1, is maximized for k = 2 and �T =
p
2T�t. From this

it can be dedudcd that

Ss
sp =

1

2

p
T2�t; N =

p
T2�t; Es

sp =
1

2
: (4.24)

Remark 4.8. Equ.(4.24) seems to say that the e�ciency is bounded by the factor 1
2
.

But Bal [5] shows that this can be overcome by introducing a multi-step system. We

assume that we have a scale of time steps such that

�mT � �m�1T � :::� �1T � �0T � T:

The speeup of the multi-step algorithm is then given by

S =
T

�mT

N
�
2
�
�0T
�1T

+ :::+ �m�1T
�mT

�
+ �m�1T

�mT

� : (4.25)

By using this multi-step method, which is implemented as a restarted algorithm (see

[5] for details), the e�ciency can be close to 1.

Weak Scaling Study

We next consider the case in which the problem is to be solved up to time T = N�T ,

with �T �xed. That is, the length of time (hence the problem size) increases linearly

with the number of processors. As mentioned previously, in perfect parallelism one

would expect the wallclock time to be independent of N, since each processor would

be doing exactly the same amount of work. That is,

W =
TN (N ��T )
T1(�T )

= 1; (4.26)

where Tn(t) denotes the wallclock time needed to solve a problem of length t using

n processors. In the parareal case, the time needed to solve a problem of size N�T
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using N processors is:

Tw
sp = kw(N)(N � T ser

G (�T ) + T ser
F (�T )); (4.27)

from which the work per processor becomes:

Ww
sp(N) =

Tw
sp

T ser
F (�T )

= kw(N)

�
1 +

N

�

�
: (4.28)

Proposition 4.3. (Speedup and e�ciency for weak scaling)

The weak scaling parallel speed-up factor (or gain) for the Parareal Algorithm is given

by:

Sw
sp =

T ser
F (N�T )

Tw
sp

=

�
kw(N)

�
� +

1

N

���1
; (4.29)

and the coresponding e�ciency is

Ew
sp =

Sw
sp

N
= [kw(N) (N� + 1)]�1 : (4.30)

Note that the function kw(N) is di�erent from ks(N), since now T is not kept

�xed. As before, the classical weak scaling for the spatial case, Wsp = 1, is only

recovered if � !1 and if kw(N) = 1. This will certainly not be the case. Again, it

seems that � roughly sets the maximum number of processors for which a favorable

scaling for the work-per-processor should be expected, although how good the scaling

would be ultimately depends on the form of kw(N).

4.4 Time-and-space Parallelization - the Extended

Parareal Algorithm (EPA)

Noticing that our space-parallized solvers are essentially capable of reproducing the

numerical solutions obtained by their serial version (Remark 4.3), and that we have

freedom to choose which solvers to use for G and F in SPA (Remark 4.7), it is natural

63



to think of incorprating the space-parallelized solvers into the framework of SPA to

achieve both time and space parallelization.

However, the naive thought of substituting space-parallelized ones for the serial

propagators G and F of SPA is not optimal, in the sense that more processors waste

their power to unnecessarily repeat previous work due to the fact that in SPA all

iterations always start from the �rst time segment.

We hereby propose an extension to the Parareal Algorithm (described in Table

4.2), to e�ectively bring the space-parallelized solvers into the framework of SPA. The

input parameters of the extended algorithm are listed in Table 4.3.

Again, the code implementing the Extended Parareal Algorithm is written in

modular C, so that other Hodgkin-Huxley type of ionic models and/or other time

integrators can be incorporated easily, and it uses the MPI library for parallization.

The code follows the Master-Slave structure and object-oriented design in which the

master process is not involved in the computation.

We see that there are dozens of input parameters involved, which give us great


exibility for various simulation purposes. We list some important setups to show

that the algorithm proposed in Table 4.2, and its implementaion, is able to not

only incorprate space parallized solvers, but also to reproduce the simpler algorithms

described in previous sections. This makes it possible to compare performance of the

schemes from within the same code.

Remark 4.9. (Special Setup I: reproduction of the serial implementations)

The numerical solution obtained by the coarse propagator G (Table 4.2) reproduces

the numerical solution obtained by the serial implementation (x3.5). This is achieved
simply by setting nWRs = 1, nTS = 1, CSP = 0, and FTS = none.
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Table 4.2: Extended Parareal Algorithm

Divide the time interval [0; T ] into N time segments [tn; tn+1], 0 = t0 < ::: < tN = T .
Assume M processors at disposal for parallel computing, where M � N .

U old
0  u0

for n = 0 : N � 1 do
Apply space-parallelized coarse operator G, using minfM;nGg processors,
on time segment [tn; tn+1] with initial value U old

n .
U old
n+1  G(tn+1; tn; U

old
n )

end for
if no �ne operator F is de�ned then

print U old
n for n = 0; :::; N and return

end if
Unew
0  u0, G

old
n  U old

n for n = 0; :::; N , Gnew
0  U old

0

k  0
while true do

Apply space-parallelized �ne operator F , using minf M
N�k

; nFg processors per
time segment, concurrently on time segments [tn; tn+1] with intial values
U old
n ; n = k; :::; N � 1.

Unew
n+1  F (tn+1; tn; U

old
n ) for n = k; :::; N � 1

k  k + 1
if k = N then
print Unew

n for n = 0; :::; N and break
end if
for n = k : N � 1 do
Apply space-parallelized coarse operator G, using minfM;nGg processors, on
time segment [tn; tn+1] with initial value Unew

n .
Gnew
n+1  G(tn+1; tn; U

new
n )

Unew
n+1  Gnew

n+1 + Unew
n+1 �Gold

n+1

end for
if maxk�n�N jUnew

n � U old
n j � TOL then

print Unew
n for n = 0; :::; N and break

end if
U old
n  Unew

n for n = k; :::; N
swap Gold and Gnew

end while
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Table 4.3: Input Parameters for the Extended Parareal Algorithm

Symbol Unit Meaning

nWRs | number of MPI worker processors
tstart ms starting time
tmax ms maximum simulation time
dthist ms frequency to print out history
dtprof ms frequency to print out pro�le
nTS | number of time segments
TOL | tolerance to stop iteration of parareal algorithm
CTS | choice of coarse propagator G
CSP | type of coarse propagator G. (0=serial, 1=parallel)
cWRs | (= nG), optimal number of processors for propagator G
cNsub | number of substeps if propagator G = STS
cdamp | damping number if propagator G = STS
FTS | choice of �ne propagator F
FSP | type of propagator F . (0 = serial, 1 = parallel)
fWRs | (= nF ), optimal number of processors for propagator F
fNsub | number of substeps if propagator F = STS
fdamp | damping number if propagator F = STS
dtfacG | rescaling factor for time step in propagator G
dtfacF | rescaling factor for time step in propagator F
MM | number of control volumes in the smallest biological cell

minCell �m minimal biological cell length
maxCell �m maximal biological cell length
lend �m left end of cable
rend �m right end of cable

APD[0] | index of �rst node used for computing APD
APD[1] | index of second node used for computing APD
SMODEL | choice of ionic model (1 = HH, 2 = LR)

Cm �F=cm2 membrane capacitance
Ri 
 cm resistivity inside biological cells
Rgap 
 cm gap junction resistivity between cells
a �m radius of the cable
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Table 4.3: Continued

Symbol Unit Meaning
KOnormal mM normal value of [K]o

U0 | array of initial values in normal region of cable
KOabnorm mM abnormal value of [K]o

U1 | array of initial values in abnormal region of cable
stim period ms stimulus peroid
stim dur ms stimulus duration
stim start ms stimulus starting time
stim end ms stimulus end time
stim range �m stimulus range [0; range]
stim ampl �A=cm2 stimulus amplitude

Remark 4.10. (Special Setup II: reproduction of the space parallized

implementations)

The numerical solution obtained by the coarse propagator G of EPA reproduces the

numerical solution obtained by the space parallized implementation (x4.2). This is

achieved by setting nWRs = 1, nTS = 1, CSP = 1, and FTS = none.

Remark 4.11. (Special Setup III: reproduction of SPA implementations)

The numerical solution obtained by the Extended Parareal Algorithm reproduces

the numerical solution obtained by the Standard Parareal implementation. This is

achieved by setting CSP = 0, and FSP = 0.

We list some other important features of EPA here.

Remark 4.12. By numerical experiments we determine the parameters nG and nF

so that the coarse propagator G and the �ne propagator F each achieves its best

performance when these numbers of processors are used. These numbers are used

whenever the available processors are more than these numbers in order to avoid

unnecssray communication overheads in practice.

Remark 4.13. There are numerous combinations of coarse and �ne propagators

(lower order & higher order, larger time-step & smaller time-step, etc).
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Remark 4.14. The extended Parareal algorithm inherits numerical properties, such

as stability and convergence, from the Standard Parareal Algorithm but it has very

di�erent performance. When the coarse and �ne propagators are both spatially

parallized, the number of processors used for the coarse propagator G per subproblem

is

�nG =

8<: nG; if M � nG

M; otherwise
= minfM;nGg;

and the number of processors used for the �ne propagator F per subproblem is

�nNF =

8<: nF ; if M
N
� nF

M
N
; otherwise

= min

�
M

N
;nF

�
;

where M is the total number of worker processors, N is the number of time segments

such that N �M , and k is the count of parareal iterations.

Performance Analysis

Let the time interval [0; T ] of the simulation be divided into N segments each of lenght

�T = T=N . Denote the wallclock time to solve the problem using space parallized

coarse solver G with n processors by T n
G(T ), and to solve it using space parallized

�ne solver F with n processors be T n
F (T ). Note that the �ne solver F is not only

parallized in space, but also parallized in time. We denote the wallclock time to solve

the problem using time-and-space parallized F with n processors by eT n
F (T ). Finally,

we assume that T n
G and T n

F satisfy the following relations,

T n
G(�T ) =

8>>><>>>:
1
n
T n
G(n ��T ) = 1

n
T ser
G (�T ); n � nG

T nG
G ; n > nG

T n
F (�T ) =

8>>><>>>:
1
n
T n
F (n ��T ) = 1

n
T ser
F (�T ); n � nF

T nF
F ; n > nF

(4.31)
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for all �T � T . In other words, we assume that the spatially parallelized G and

F maintain linear speedup until they reach their speedup limits at nG and nF ,

respectively.

Now we are in position to disscuss the performance of EPA. Let M be the total

number of worker processors such that M > N . Without counting communication

overhead caused by the space and time parallizations, the fact that the coarse

propagator G runs sequentially in time yields

TM
G (�T ) = T�nG

G (�T ) =
1

N
T�nG
G (T ) =

1

N
TM
G (T ) =

1

N�nG
T ser
G (T )

=) TM
G (T ) =

1

�nG
T ser
G (T ); TM

G (�T ) =
1

N�nG
T ser
G (T )

=)

8>>><>>>:
TM
G (T ) = 1

M
T ser
G (T ); TM

G (�T ) = 1
NM

T ser
G (T ); M � nG

TM
G (T ) = 1

nG
T ser
G (T ); TM

G (�T ) = 1
NnG

T ser
G (T ); M > nG

(4.32)

On the other hand, the fact that the �ne propagator F runs in parallel in time suggests

eTM
F (T ) = T

�nNF
F (�T ) =

1

�nNF
T ser
F (�T ) =

1

N�nNF
T ser
F (T )

=) eTM
F (T ) =

1

N�nNF
T ser
F (T ); T

�nNF
F (�T ) =

1

N�nNF
T ser
F (T )

=)

8>>><>>>:
eTM
F (T ) = 1

M
T ser
F (T ); TM

F (�T ) = 1
M
T ser
F (T ); M � N � nF

eTM
F (T ) = 1

NnF
T ser
F (T ); T�nF

F (�T ) = 1
NnF

T ser
F (T ); M > N � nF

(4.33)

If we take G = F , and therefore T ser
G = T ser

F and nG = nF , then equation (4.32)

represents the performance of space parallelized F and equation (4.33) represents

the performance of time-and-space parallelized F running on the same number of

processors M to an identical time T . We obtain some interesting but very important

observations on the performance of EPA by comparing (4.32) and (4.33).
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First, when we have limited number of processors, such as M � nF , the overall

speedups obtained by space parallized F and time-and-space parallized F are the

same, T ser
F =TM

F = T ser
F =eTM

F = M , even though they have di�erent speedups on

segments �T . It indicates that, in this case, EPA performs worse than SP since

additional computational cost of the coarse propagator is invovled in each iteration,

plus that usually it takes more than one iteration to converge, and therefore involves

more computational cost of the �ne propagator. If more processors come into play,

such as M > nF , then SP cannot take any advantage of additional processors, but

EPA can, and now EPA begins to show its merit over SP, since eTM
F =TM

F = nF=M < 1.

The more processors we have available, the better performance EPA achieves in one

iteration, and if the computational cost of the coarse propagator is far less than that

of the �ne propagator, EPA could beat SP provided it converges after not too many

iterations. In the extreme case, M � N � nF , EPA achieves its best, N times faster

than SP, which is linearly proportional to the number of time segments N .

Next, notice that TM
F for space parallelized F is independent of the number of

time segments N , as shown in (4.32), but eTM
F for EPA, shown in (4.33), is inversely

proportional to N . This indicates that, in the case of strong scaling, when simulation

time T is �xed, we can break T into more segments with �xed number of processors

per time segments to achieve better speedup when more and more processors are

available. On the other hand, in the case of weak scaling, when �T and number of

processors nF used on each segment are �xed with T = N � �T varying, then eTM
F

stays the same, while TM
F increases linearly with N . This again makes EPA N times

faster than SP. So, in both scaling senses, EPA has the potential to perform better

than SP when more and more processors are at our disposal.

Although the above discussion is rough, it gives us a sound direction to think of

when EPA is useful. Now we need to carefully calculate the computational cost T s
ep

of EPA, converging in ks iterations, with ks � N , to have a better insight of this
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algorithm. T s
ep can be estimated (ignoring overheads) as

T s
ep = TM

G (T ) + eTM
F (T )| {z }

1st iteration

+TM
G (T ��T ) + eTM

F (T ��T )| {z }
2nd iteration

+ � � �

+ TM
G (T � (ks � 1)�T ) + eTM

F (T � (ks � 1)�T )| {z }
ks iteration

=
�
TM
G (T ) + � � �+ TM

G (T � (ks � 1)�T )
�
+
�eTM

F (T ) + � � �+ eTM
F (T � (ks � 1)�T )

�
= (N + � � �+ (N � ks + 1))T�nG

G (�T ) +
�
T
�nNF
F (�T ) + � � �+ T

�nN�ks+1
F

F (�T )
�

=
(2N � ks + 1)ks

2
T�nG
G (�T ) +

�
T
�nNF
F (�T ) + � � �+ T

�nN�ks+1
F

F (�T )
�
: (4.34)

Case I: When M < minfnG; nFg, EPA is slower than SP for any rs � 1, since

T s
ep > T

�nNF
F (�T ) = T

M=N
F (�T ) = eTM

F (T ) =
1

M
T ser
F = TM

F (T ):

Case II: When M � maxfnG; N � nFg, without loss of generality, we assume nG <

N � nF and M = N � nF and have

�nG = nG; and �nnF = nF ; for all n = N; :::; N � ks + 1;

thus,

T s
ep =

(2N � ks + 1)ks
2

T nG
G (�T ) + ks � T nF

F (�T )

=
(2N � ks + 1)ks

2NnG
T ser
G (T ) +

ks
NnF

T ser
F (T ); (4.35)

and the speedup and e�ciency are given by

Ss
ep =

T ser
F

T s
ep

=
N

(2N�ks+1)ks
2nG�

+ ks
nF

; (4.36)
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and

Es
ep =

Ss
ep

M
=

N

nF

1
(2N�ks+1)ks

2nG�
+ ks

nF

=
N

(2N�ks+1)ks�
2�

+ ks
: (4.37)

where � = nF=nG.

To achieve better performance than space parallized F , we want

TM
F

T s
ep

=
T nF
F

T s
ep

=
1

nF

T ser
F

T s
ep

=
Ss
ep

nF
= Es

ep > 1:

That is, we want
�

2�
ks

2 �
�
(2N + 1)�

2�
+ 1

�
ks +N > 0:

Solving the inequality for ks < N yields

ks < N +
1

2
+
�

�
�
s�

N +
1

2
+
�

�

�2

� 2N
�

�

=
2N �

�

N + 1
2
+ �

�
+

q�
N + 1

2
+ �

�

�2 � 2N �
�

: (4.38)

Also notice that
�

�
=

T ser
F =nF

T ser
G =nG

=
TM
F

TM
G

:= 
 � 1:

Thus, we obtain

ks < 
; for 1� 
 � N; (4.39)

and

ks /
1

2
N; for 1� N � 
; (4.40)

and

ks < N; for 1� N � 
: (4.41)
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Case III: When nG < M < N � nF , we assume nG � nF and consider the case that

p � nF �M < (p+ 1) � nF for some 1 � p < N � 1. Then

T s
ep =

(2N � ks + 1)ks
2

T nG
G (�T ) +

�
T
M=N
F (�T ) + � � �+ T

M=(p+1)
F (�T )

�
+
�
T
M=p
F (�T ) + � � �+ T

M=(N�ks+1)
F (�T )

�
=

(2N � ks + 1)ks
2NnG

T ser
G (T ) +

�
N

M
T ser
F (�T ) + � � �+ p+ 1

M
T ser
F (�T )

�
+ (ks + p�N)T nF

F (�T )

=
(2N � ks + 1)ks

2NnG
T ser
G (T ) +

(N + p+ 1)(N � p)

2NM
T ser
F (T ) +

ks + p�N

NnF
T ser
F (T );

and

T s
ep

TM
F (T )

= nF
T s
ep

T ser
F (T )

=
(2N � ks + 1)ks

2N

�

�
+
(N + p+ 1)(N � p)

2N

nF
M

+
ks + p�N

N

� (2N � ks + 1)ks
2N

�

�
+
(N + p+ 1)(N � p)

2N

1

p
+
ks + p�N

N
want
< 1:

That is,

�

2�
ks

2 �
�
(2N + 1)�

2�
+ 1

�
ks +

�N 2 �N + 4Np + p� p2

2p
> 0:

Inequality holds when

ks < N +
1

2
+
�

�
�
s�

N +
1

2
+
�

�

�2

� �

�
� �N

2 �N + 4Np + p� p2

p
: (4.42)

Notice that the right hand side of (4.42) is decreasing w.r.t 1 < p < N . When p = N ,

it is reduced to case I when p = 1 and case II when p = N . We can also check that
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when p = N=2, it becomes

ks < N +
1

2
+
�

�
�
s�

N +
1

2
+
�

�

�2

� �

�
� (3
2
N � 1);

which requires fewer iterations ks compared to (4.38) in case II.

We summarize our discussion above and give a conclusion on the performance of

EPA in the following Remark.

Remark 4.15. The Extended Parareal Algorithm, compared to pure space paral-

lization, has the potential to perform faster on large number of processors. More

speci�cally, when the number of processors is limited, as in case I, one cannot expect

EPA to perform faster than pure space parallelization. In this case, we suggest to use

fewer time segments. On the other hand, if su�ciently many processors are available,

then EPA could be faster, as in case III, provided the number of iterations is bounded

by (4.42) and (4.39) - (4.41) in case II.
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Chapter 5

NUMERICAL SIMULATIONS

We implemented the numerical algorithms described in Chapter 3 to solve the

electrical propagation model (3.1) with Luo-Rudy phase I (1991) model numerically

in one dimension and in two dimensions.

x5.1 describes our one-dimensional experiments. We compare the performance

of space-only, time-only (Standard Parareal), and space-and-time parallelization

(Extended Parareal) schemes in x5.1.1-x5.1.4. Biologically-oriented simulations are

discussed in x5.1.5. We study the e�ect of varying the stimulus, Rgap, and [K]o.

Two-dimensional simulations are reported in x5.2, where we vary Rgap and [K]o.

The parameters Cm = 1:2�F=cm2 and a = 10:0�m were �xed in all one- and two-

dimensional simulations. The rest of the parameters listed in Table 4.3 were varied

for various simulation purposes.

The numerical experiments reported in this chapter were performed on the Frost

cluster of the National Institute for Computational Science (NICS) at Oak Ridge

National Laboratory. Frost is equipped with 2048 Intel Xeon 2.8 GHz processors

(128 16-core nodes), in�niband interconnect, and gigabit ethernet network.
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5.1 One-dimensional Numerical Experiments

Experiments in x5.1.1 - x5.1.3 are devote to performance of the space-only, time-only,
and space-and-time parallel schemes developed in Chapter 4.

The simulations were performed on a (one-dimesional) "short" cable of length

16mm with parameters and initial values shown in Table 5.1. We chose a "short" cable

in order to push each parallel scheme to its limit with more than enough processors

and observe when the parallel schemes begin to lose in speedup and e�ciency. We

call this cable "short" for our parallel computing even though this cable consisted of

1000 control volumes and took more than 2 million time steps to evolve to 500 ms for

non-adaptive explicit schemes, due to its �ne spatial discretization of �x = 16 �m.

So it is relatively "short" for parallel computing but it is costly and would take hours

to accomplish with serial computing.

A single stimulus was applied on the cable at time 10ms, to eliminate the in
uence

of multiple stimuli on the action potential duration (APD).

Table 5.1: Input parameter values for 16 mm cable

Parameter Value Stimulus

tmax 500ms Period 999999ms��

�x 16 �m Duration 3ms
Ri[0] 150 
cm� Start 10ms
Ri[1] 150 
cm� End 999999ms��

APD[0] 100 Range 30 �m
APD[1] 900 Amplitude �500 �A=cm2

Inital Vaules for Luo-Rudy (1991) Model

V �84:54799678131609 mV d 0:00297744387045
m 0:0016645202522 f 0:99998123976333
h 0:98330219790334 X 0:00564346929716
j 0:98952187383458 Cai 0:00017836352927

* values are set to be identical to prevent random cell lengths
** values are set large to generate a single stimulus

76



5.1.1 Experiments with Space Parallelization

Three fastest space parallelized solvers, STS, DF and RK4, were chosen to

demonstrate the performance of space parallelized schemes. Recall that STS is

the Super-Time-Stepping scheme (x3.1), here applied with N = 4 super-steps and

damping � = 0:08; DF is the DuFort-Frankel scheme (x3.2); and RK4 is the classical
4th order Runge-Kutta scheme (x3.3).

In these simulations, the three solvers were run on 16mm cable, with �x = 16�m,

yielding a mesh of 1000 control volumes, and time step �t = 0:000244 ms to satify

the CFL condition for these non-adaptive explicit schemes.

The CPU time, speedup and e�ciency achieved by these three solvers on increasing

number of processors are shown in Tables 5.2 - 5.4. The computed biological quantities

are listed in Table 5.5. To compare their performance, log-scale plots of speedup and

e�ciency of the solvers are shown in Figure 5.1.

Table 5.2: Performance of space parallelized STS solver (with
N = 4, � = 0:08)

Procs CPU Time (s) Speedup E�ciency

1 508 | |
2 255 1.99 99.6%
5 103 4.93 98.6%
10 85 5.98 59.8%
25 36 14.11 56.4%
50 25 20.32 40.6%
100 14 36.29 36.3%
200 10 50.8 25.4%
250 10 50.8 20.3%
500 12 42.33 8.5%
800 20 25.4 3.2%
1000 235 2.16 0.2%

We draw the following conclusions based on these experiments:

� As seen in Table 5.5, all three solvers produce identical values for the biological

quantities (except small variations in dV=dtmax). Since STS is the fastest among
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Table 5.3: Performance of space parallelized DF solver

Procs CPU Time (s) Speedup E�ciency

1 1132 | |
2 563 2.01 100.5%
5 255 4.44 88.8%
10 191 5.93 59.3%
25 81 13.98 55.9%
50 51 22.20 44.4%
100 29 39.03 39%
200 20 56.6 28.3%
250 22 51.45 20.6%
500 23 49.22 9.8%
800 31 36.52 4.6%
1000 34 33.29 3.3%

Table 5.4: Performance of space parallelized RK4 solver

Procs CPU Time (s) Speedup E�ciency

1 10306 | |
2 5153 2 100%
5 2221 4.64 92.8%
10 1656 6.22 62.2%
25 735 14.02 56.1%
50 433 23.80 47.6%
100 275 37.48 37.5%
200 189 54.53 27.3%
250 203 50.77 20.3%
500 244 42.24 8.4%
800 448 23 2.9%
1000 378 27.26 2.7%

Table 5.5: Computed biological quantities from STS, DF and RK4

Solver APD0 APD1 Spd Vmax dV=dt
max

(ms) (ms) (cm=s) (mV) (mV=ms)

STS 386.00 380.00 98.462 38 437
DF 386.00 380.00 98.462 38 434
RK4 386.00 380.00 98.462 38 436
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(a) Speedup (b) E�ciency

Figure 5.1: Speedup and e�cency of space parallelized STS (red),
DF (green) and RK4 (blue), in log-scales

these three (almost 2 times faster than DF and 20 times faster than RK4), STS

is the best candidate for coarse propagator in the Parareal Algorithm.

� Speedup and e�ciency achieved by space parallelization of these three solvers

remain essentially linearly increasing for up to about 200 processors, as expected

by Amdahl's Law on �xed size problem. After that, both speedup and e�ciency

decrease quickly.

� All these three solvers achieve their best speedup on 200 processors and then

begin to lose. Therefore, to achieve the fastest computation on this 16mm cable

using these three solvers, the optimal number of processors to be used for space

parallelization is 200. This number will be used in later experiments of testing

the parareal algorithms.

� The fact that these three solvers achieve their best performance (best CPU

time) on the same number of processors and their speedup and e�ciency curves

stay close to each other is unexpected. In fact, this is caused by the high-

speed communication network of the Frost cluster. Similar tests on a (small)

cluster with slower interconnect produced curves noticeably away from each

other. Thus, communication hardware can a�ect performance signi�cantly.
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These experiments on a �xed-size problem clearly show the trouble with space

parallelization. It performs well and achieves linear (or nearly linear) speedup and

best (or nearly best) e�ciency only on up to a certain number of processors, as

expected from Amdahl's Law. With more processors, performance dropped o�. When

extremely many processors were used (> 500 processors here), in which case the cost

of communication between processors contributed signi�cantly in the overhead, both

speedup and e�ciency dropped dramatically.

5.1.2 Experiments with Time Parallelization

Another series of experiments were performed with the Standard Parareal Algorithm

(SPA) for time-only parallelization on the same 16 mm cable. The combination of

serial STS (with N = 4, � = 0:08) and serial RK45 were selected for coarse and �ne

propagators, respectively. A tolerance, TOL = 2:0, was set to be the in�nite norm of

the di�erence of computed values, including both voltage and gates, obtained at the

end of all time segments in two successive iterations and used to terminate parareal

iteration. The results are shown in Table 5.6. The computed biological quantities are

almost identical to those listed in Table 5.5.

Table 5.6: Performance of Standard Parareal with TOL = 2: serial
STS and RK45 combination

Coarse Fine Procs CPU (s) Speedup E�ciency
(= time segments)

RK45 | 1 2157 | |
STS RK45 1 2665 0.81 80.9%
STS RK45 2 1873 1.15 57.6%
STS RK45 5 1370 1.57 31.5%
STS RK45 10 1401 1.54 15.4%
STS RK45 50 1285 1.68 3.4%
STS RK45 100 1901 1.13 1.1%
STS RK45 125 1882 1.15 0.9%
STS RK45 250 1883 1.15 0.5%
STS RK45 500 1863 1.16 0.2%
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The observed performance of the Standard Parareal Algorithm in solving our

problem is not as promising as we expected. It su�ers both poor performance and

poor scaling. In fact, compared to space-only parallelization (Tables 5.2, 5.4), the

CPU time and speedup are much worse, on small and large number of processors

alike.

We investigated and analyzed the computational cost of the coarse and �ne

propagators separately and found that the high overall computational cost is due

to the coarse propagator, not the �ne propagator, despite the fact that the coarse

propagator is cheap and fast relative to the �ne propagator. In one iteration of the

SPA algorithm, the coarse propagator runs sequentially, one time slice after another,

from tstart to tmax, on the entire cable, on one processor. Thus, the cost of the

serial coarse propagator remains the same essentially in every iteration no matter how

many processors or time-segments are allocated. On the contrary, more time segments

reduce the cost of the �ne propagator on one iteration since they run concurrently.

Therefore, the more time segments the total time is divided into, the higher the

contribution of the coarse propagator in the cost.

The observation and analysis of our experiments con�rm comments made by other

researchers in the literatures [50] about the Standard Parareal Algorithm, namely

that, although it is applicable theoretically, it is not recommended to use a larger

number of processors/segments.

On the other hand, it is our high hope that the Extended Parareal we proposed

can overcome this drawback of the Standard Parareal and achieve much better

performance on a large number of processors, by replacing the serial propagators

with their space parallelized ones to accelerate both coarse and �ne solvers. This

leads us to another series of experiments, described in the next subsection.
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5.1.3 Experiments with Time-and-Space Parallelization

To compare the performance of the Extended Parareal Algorithm (EPA) with its

standard cousin, numerical experiments with the same combination of algorithms

STS - RK45, were conducted on the same 16mm cable again. This time, the coarse

solver STS was space-parallelized and RK45 remained serial in space (since, being

adaptive, it cannot be paralllelized in space). An optimal number of processors =

200 was set for space parallelization of the coarse solver STS in the code (see Table

5.2). That is, all processors will be used if the total number of processors is less than

200; otherwise, 200 processors will be used for the space parallelized STS.

The results are listed in Table 5.7 and we compare them with our experiments

of Table 5.6 in Figure 5.2. It is clear that EPA performs much better than SPA by

any measure (CPU time, speedup, e�ciency, scaling), as anticipated in Remark 4.15.

EPA maintains nearly linear speedup up to 500 processors, whereas SPA 
attens out

beyond just 5 processors.

Table 5.7: Performance of Extended Parareal with TOL = 2:
space-parallelized STS and RK45 combination

Coarse Fine Procs CPU (s) Speedup E�ciency
(= time segments)

STS RK45 1 2674 0.81 80.7%
STS RK45 2 1606 1.34 67.2%
STS RK45 5 689 3.13 62.6%
STS RK45 10 529 4.08 40.8%
STS RK45 25 217 9.94 39.8%
STS RK45 50 119 18.13 36.3%
STS RK45 100 119 18.13 18.2%
STS RK45 125 99 21.79 17.4%
STS RK45 250 69 31.26 12.5%
STS RK45 500 64 33.7 6.7%

Furthermore, in order to compare the performance of a space-parallelized

numerical scheme working as the �ne propagator in the EPA with its purely space-

parallelized version, we selected the space-parallelized RK4 as a good candidate.
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(a) Speedup (b) E�ciency

Figure 5.2: Comparison of the Standard (red) and Extended (green)
Parareal Algorithms

Thus, the EPA used the combination STS - RK4. Both propagators were run with

the optimal number of processors, 200, based on our previous experiments (see Table

5.2 and Table 5.4). The results are shown in Table 5.8 and Figure 5.3.

Table 5.8: Performance of the Extended Parareal with TOL = 2:
space-parallelized STS and RK4 combination

Coarse Fine Procs Time Segments CPU (s) Speedup E�ciency

STS RK4 50 1 559 18.44 36.9%
STS RK4 200 1 239 43.12 21.6%
STS RK4 400 2 158 65.23 16.3%
STS RK4 800 4 115 89.62 11.2%
STS RK4 1000 5 101 102.04 10.2%

Comparing the Extended Parareal and space-parallelized cousins, the performance

of the Extended Parareal is outstanding, especially when a large number of processors

is at our disposal, and greatly saves computational time. This merit makes the

Extended Parareal a more suitable approach for future large scale simulations.
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Figure 5.3: Comparison of space-only parallelized RK4 (red) and
the Extended Parareal Algorithm, STS-RK4 combination (blue)

5.1.4 Summary of Comparisons of Parallel Schemes

Summarizing our results of the previous sections of this chapter and comparing the

three parallel schemes, we point out some interesting observations and draw some

important conclusions on the use of the numerical and parallel schemes in this section.

� As indicated in Table 5.5 and other tests we performed, all numerical solvers

produce identical (or nearly identical) values for those biological quantities.

� Since STS is the fastest solver, it is the best candidate for coarse propagator

in the Standard and Extended Parareal Algorithms.

� On small number of processors, the performance of the Extended Parareal is

comparable to that of the space-parallelized schemes, and far better than that

of the Standard Parareal; When larger number of processors are available, the

Extended Parareal Algorithm performs much better than the other two, which

makes it the best parallel scheme among these three schemes. Our numerical

experiments match the performance discussions described in Remark 4.15.

� The experiments on the EPA using the STS - RK45 combination, described

in x5.1.3, show that the Extended Parareal can be viewed as a vehicle to

84



employ adaptive schemes (which are impossible to parallelize in space due to

synchronization di�culties) in parallel computing.

The excellent performance of the Extended Parareal Algorith made it possible to

conduct extensive biologically oriented simulations.

5.1.5 Biologically-oriented Simulations

Extensive biological simulations and parametric studies have been performed on

cables of various lengths using the Extended Parareal Algorithm, in which we

systematically vary some of the main parameters in the model.

In this section we describe simulations on a cable of length 50 mm. This length is

a good compromize between problem size and computational cost. It is long enough

to be biologically realistic, too long for serial computing (several hours each, see

Chapter 3), but manageable with parallel computing (on hundreds of processors!). In

our parametric studies we varied the following parameters:

1. External concentration of potassium [K]o. The normal value is [K ]o = 5:4mM .

We tested both lower values (=3, 4) simulating conditions of hypokalemia, and

higher values (=7, 8, 9, 10, 11, 12, 13) simulating conditions of hyperkalemia.

2. Gap junction resistivity, Rgap, which is applied at boundaries between cardiac

cells. The normal cytoplasmic resistivity for human myocytes is Ri = 150 
cm

and Rgap is considerably higher, but no precise values are known. We tested

several higher values: Rgap = 300; 600; 1000; 2000 
cm.

3. Single or repeated (every 200ms) stimulus was applied in a small (10�m) region

at the left end of the cable.

Their in
uence on the biological quantities, such as action potential duration

(APD), propagation speed (speed) and maximal potential (Vmax) were monitored

and will be presented below. To visualize the propagation of action potentials, we
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output V at �ve equispaced points along the cable (at x = 0; L=4; L=2; 3L=4; L, with

L = cable length).

Each value of [K]o, assumed to hold everywhere, determines a resting (steady)

state which we compute by a simulation, starting from arbitrary initial values, without

applying any stimulus. The computed rest values for the potential V and the gates

are listed in Table 5.9. They are used as initial values for subsequent simulations.

The �rst simulation, on a cable of length 50mm, is with (normal) [K]o = 5:4mM ,

and Ri = Rgap = 150 
cm. Voltage history at �ve equally spaced nodes is shown in

Figure 5.4a. Note that the curves are not sigular at the upstrokes. A zoom-in plot at

the upstroke of the action potential at the right-end of the cable is shown in Figure

5.4b. Voltage pro�les at the �rst node is shown in Figure 5.5a and corresponding

gates history in Figure 5.5b.
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Figure 5.4: Action potential on a cable of length 50 mm

In the �rst set of tests, we apply stimulus of various strengths on the same cable.

The obtained results perfectly matched the description of "all-or-nothing" property

and produced either identical action potentials (Figure 5.4a), when the strength was

above certain threshold, or 
at lines when the strength was below the threshold.

The next series of tests were designed to manipulate the stimulus period and

observe its e�ect on the potential propagation. Some results are shown in Figure 5.6.
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Table 5.9: [K]o and associated potential and gates in Luo-Rudy
phase I (1991) model

[K]o 5.4 (normal) 3.0 (abnormal) 4.0 (abnormal)

V -84.54799678282664 -96.00223575957419 -90.81551303451198

m 0.00166648217313 0.00024070076809 0.00058200973949

h 0.98330219789904 0.99872727894491 0.99590013700613

j 0.98952187383367 0.99889732941648 0.99703695298703

d 0.00297744387078 0.00114649813087 0.00176092718051

f 0.99998123976333 0.99999782305501 0.99999422716513

X 0.00564346895260 0.00180173175262 0.00303206018008

Cai 0.00017836352928 0.00013243547761 0.00014830982920

[K]o 7.0 (abnormal) 8.0 (abnormal) 9.0 (abnormal)

V -78.67973684400134 -75.54165652692299 -72.70773238255576

m 0.00438066429310 0.00728002211552 0.01144339635209

h 0.93986515149662 0.88490560164669 0.80201421451890

j 0.95809689756957 0.90723546645185 0.82153559019045

d 0.00490745454890 0.00643453367652 0.00823835750666

f 0.99994345209289 0.99989797475749 0.99982613252835

X 0.00998842432493 0.01348050680379 0.01760223313960

Cai 0.00022359447247 0.00025791194364 0.00029720770210

[K]o 10.0 (abnormal) 11.0 (abnormal) 12.0 (abnormal)

V -70.12397264679385 -67.74748787738635 -65.54718840722101

m 0.01717608198246 0.02479289747129 0.03460798138824

h 0.69306674613317 0.56882167821468 0.44498255576699

j 0.70569924515929 0.57458900871432 0.44585024710676

d 0.01034236960485 0.01277070476184 0.01554927719980

f 0.99971727689208 0.99955792433128 0.99933118604069

X 0.02236497194614 0.02777227685655 0.03382343582322

Cai 0.00034169540110 0.00039158233702 0.00044709573228

[K]o 13.0 (abnormal)

V -63.50059136465195

m 0.04690119914541

h 0.33513708858460

j 0.33317233223800

d 0.01870109003990

f 0.99901664361355

X 0.04050452208904

Cai 0.00050838365402
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Figure 5.5: Voltage pro�les and gates history at the �rst node on a
cable of length 50mm
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Figure 5.6: Simulation of refractoriness on a cable of length 50 mm
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The action potential duration shown in Figures 5.6a - 5.6b is about 400ms. From

Figure 5.6a, one can see that the 2nd action potential is evoked by the 3rd stimulus,

which takes place after the absolute refractory period (ARP) of the 1st stimulus,

rather than the 2nd stimulus occurring inside the APR of the 1st stimulus. The same

phenomenon can be observed in Figure 5.6b as well with stimulus period being 200ms

so that the 2nd stimulus takes place right after the ARP. Figure 5.6 demonstrates

refractoriness of the action potential, as well as the robustness of its shape.

Next, we study the e�ect of Rgap on the main biological quantites. Results at the

middle of the cable appear in Figures 5.7a - 5.7d. From these �gures, we can see that

(a) Rgap does not change the shape of the actions potential, but higher Rgap delays

the upstroke, as expected. (b) The action potential duration is very robust and Rgap

has little e�ect on it. APD remains almost constant as Rgap is varied. (c) Higher

Rgap decreases the propagation speed. A decaying cubic (in green): y = x�3 �ts it

very well. (d) Rgap increases Vmax signi�cantly. A cubic (in green): y = x3 gives a

good �t.

The above simulations were with normal [K]o = 5:4. To detect the e�ect of Rgap

and of abnormal [K]o, we repeated the above simulations with various [K]o and Rgap

values. Selected representative results are shown in Figures 5.8a - 5.8d. They show

that Rgap has similar e�ect as in the normal [K]o case, and that abnormal [K]o a�ects

APD, propagation speed and Vmax signi�cantly.

Finally, we explore what happens if only a portion of the cable is exposed to

abnormal [K ]o. For each of the abnormal [K ]o values: 3, 4, 7, 8, 9, 10, 11, 12, 13

mM , we performed seven simulations, with the abnormal value applied to a di�erent

portion of the cable and in di�erent parts, e.g. in the left third, the right third,

left two thirds, middle two thirds, right two thirds, etc. This set of 63 simulations

attempts to capture the variability of APD, propagation speed and Vmax, which are

visualized by the red vertical segments in Figures 5.9a - 5.9c.
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Figure 5.7: E�ect of Rgap on biological quantities

90



 0

 20

 40

 60

 80

 100

 120

 140

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

A
P

D
 (

%
 o

f n
or

m
al

)

Rgap  ( Ohm.cm )

APD vs Rgap for various KO values (normal is KO=5.4)

KO 3  

KO 4  

KO 5.4

KO 7  
KO 8  
KO 9  
KO 10
KO 11

KO 12

KO 13

(a) E�ect on APD

 50

 60

 70

 80

 90

 100

 110

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

S
pe

ed
 (

 c
m

/s
 )

Rgap  ( Ohm.cm )

Propagation Speed vs Rgap for various KO values

KO 3  

KO 4  

KO 5.4

KO 7  KO 8  
KO 9  

KO 10

KO 11

KO 12

KO 13

(b) E�ect on propagation speed

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

V
m

ax
 (

%
 o

f "
no

rm
al

")

Rgap  ( Ohm.cm )

Vmax vs Rgap for various KO values

KO 3  KO 4  
KO 5.4
KO 7  KO 8  KO 9  
KO 10

KO 11

KO 12

KO 13

(c) E�ect on Vmax

 150

 200

 250

 300

 350

 400

 450

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

(d
V

/d
t)

m
ax

 (
 m

V
/m

s 
)

Rgap  ( Ohm.cm )

(dV/dt)max vs Rgap for various KO values

KO 3  
KO 4  
KO 5.4
KO 7  

KO 8  

KO 9  

KO 10

KO 11

KO 12
KO 13

(d) E�ect on dV=dtmax

Figure 5.8: E�ect of varying Rgap and [K]o.
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Figure 5.9: E�ect of [K ]o on biological quantities.
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We see that the e�ect of abnormal [K ]o values on APD (Figure 5.9a) is quite

di�erent from the e�ect on propagation speed (Figure 5.9b) and Vmax (Figure 5.9c),

which are very similar.

These experiments on one-dimensional cables led us to hope that abnormal [K]o

values, placed in a portion of two-dimensional tissues, may have signi�cant e�ect on

the potential propagation and drive it into irregular patterns. Our two-dimensional

experiments, described in the next section, verify this guess.

5.2 Two-dimensional Experiments

Our two-dimensional experiments focus on simulating abnormal conditions that

may shed light on generation of arrhythmias. Arrhythmic behavior is unlikely to

be captured in one space dimension, since it is often associated with chaotic and

complicated patterns.

Biological experiments have shown that sick tissue is often associated with regions

of abnormal potassium concentration. The condition of lower K+ concentration in

the blood is called hypokalemia, and that of higher concentration hyperkalemia.

The normal value of extracellular potassium in the Luo-Rudy ionic model is [K]o =

5:4 mM , so we consider a value of 4 as representing hypokalemia and a value of 11

for hyperkalemia.

The quantity [K ]o enters several formulas in the Luo-Rudy ionic model, so in

particular alters the resting state (voltage and gates). [K]o values and associated

resting voltage and gates in Luo-Rudy phase I (1991) model were listed in Table 5.9.

In order to simulate hypokalemia and hyperkalemia, we assign an abnormal value

[K]o (= 4 or 11) in a rectangular region of control volumes while the rest of the tissue

has normal [K]o = 5:4mM .

The two-dimensional simulations reported below were performed on tissue of

dimensions 51mm�31mm, more precisely: 51200 �m�30720�m, using �x = 32�m

and �y = 16 �m, resulting in a grid of 1600 � 1920 nodes.
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For easy comparison and reference, we list all computed biological quantities in

our two-dimensional experiments, column by column, in Table 5.10.

Table 5.10: Computed biological quantities in tissue of dimensions
51� 31mm with various pairs of [K]o, Rgap values

[K]o(mM) , Rgap(
cm) 5.4 , 150 5.4 , 1000 4.0 , 150 4.0 , 1000 11.0 , 1000

APD0 (ms) 383.31 382.86 196.58 382.86 282.60
APD1 (ms) 379.91 381.89 272.24 381.99 289.10
speed (cm=s) 125.5 48.8 36.8 47.4 45.3
Vmax (mV) 66 174 118 174 174

dV=dtmax (mV=ms) 1000 973 1000 973 998

5.2.1 Simulations of healthy tissue

Before proceeding to simulate more complicated cases, we �rst lay down a benchmark

by examining healthy tissue of dimension 51mm � 31mm without abnormal region.

We simulated two cases, one with Rgap = 150 
cm and one with Rgap = 1000 
cm.

Stimulus of identical strength and period 200ms were placed at the lower-left corner.

Voltage pro�les with Rgap = 1000 
cm at several time points are shown in Figure

5.10.

Both cases produced similar action potentials, but the higher resistivity reduces

the propagation speed, as expected. This can be seen in Figures 5.11a - 5.11b, showing

voltage histories at three locations (one at lower-left corner inside the stimulated

region, one at the center and one on the right).

The computed biological quantities are listed in columns 2 and 3 of Table 5.10. As

in the one-dimensional simulations, only propagation speed and Vmax are signi�cantly

a�ected by Rgap while the other quantities stay nearly identical.

5.2.2 Simulations of hypokalemia

The next two experiments were conducted again on tissue of dimensions 51mm �
31mm, with Rgap = 1000 
cm, and stimulus of period 200 ms applied near the lower
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(a) Voltage at t = 20ms (b) Voltage at t = 110ms

(c) Voltage at t = 390ms (d) Voltage at t = 430ms

(e) Voltage at t = 470ms (f) Voltage at t = 590ms

Figure 5.10: Action potential propagation in tissue of dimensions
51mm � 31mm with normal [K]0 = 5:4mM and Rgap = 1000 
cm.
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(a) [K]
0
= 5:4mM & Rgap = 150 
cm (b) [K]

0
= 5:4mM & Rgap = 1000 
cm

(c) [K]
0
= 4mM & Rgap = 1000 
cm (d) [K]

0
= 11mM & Rgap = 1000 
cm

Figure 5.11: Votage history at three identical nodes in tissue of
dimensions 51mm� 31mm with various [K ]o and Rgap.
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left corner. An abnormal value [K]o = 4:0mM is set in a rectangle 800 � 800 nodes

(= 25:6� 12:8mm), placed o� center (visible in the surface plots).

In order to clearly see that voltage propagated in a rather chaotic pattern, several

snapshots are shown in Figures 5.12, 5.13, 5.14, and 5.15, after the 1st, 3rd, 4th and

6th stimulus, respectively. Several di�erences can be observed easily:

� In Fig.5.12a, the "dip" represents the resting values corresponding to abnormal

[K]0 = 4:0. It is noticeably di�erent from Fig.5.10a of the previous experiment.

� The voltage pro�les evolve into complicated, non-repeating and rather chaotic

pattern after each stimulus. We believe this is a good indicator of arrhythmic

behavior.

� One interesting phenomenon is that the voltage circled the abnormal region

either from both sides (around time 490 ms, Fig.5.13c) and jointed together

(around time 520ms, Fig.5.13d), or from one side (around 640 ms, Fig.5.14d).

Voltage history at three nodes, same as the ones selected in [K]0 = 5:4 case, is

shown in Figure 5.11c. One can see that the blue curve (voltage at the node inside

the abnormal region) has quite di�erent shape from the one in Figure 5.11b.

The computed biological quantities are shown in columns 4 and 5 of Table

5.10. Unlike the normal cases, all computed biological quantities, a�ected by the

combination of Rgap and [K]o, are quite di�erent in columns 4 and 5.

5.2.3 Simulations of hyperkalemia

Simulations of hyperkalemia were performed on tissue of the same size (51mm �
31mm), with the same settings as in x5.2.2, but with high abnormal [K ]o = 11:0mM

in exactly the same rectangular region. It can be seen in Figure 5.16a that the voltage

starts with a bump instead of a dip (Figure 5.12a), and propagated in quite di�erent

manner. It propagated over, not around, the abnormal region, as can be seen in

Figure 5.16b and Figure 5.16f. However, the pattern is still rather chaotic. Voltage
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(a) Voltage at t = 20ms (b) Voltage at t = 70ms

(c) Voltage at t = 110ms (d) Voltage at t = 140ms

(e) Voltage at t = 160ms (f) Voltage at t = 200ms

Figure 5.12: Action potential propagation after the 1st stimulus in
tissue of dimensions 51mm � 31mm with abnormal [K ]0 = 4:0mM in

a rectangular region placed o� center.
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(a) Voltage at t = 420ms (b) Voltage at t = 460ms

(c) Voltage at t = 490ms (d) Voltage at t = 520ms

(e) Voltage at t = 560ms (f) Voltage at t = 600ms

Figure 5.13: Same as Figure 5.12 but after the 3rd stimulus.
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(a) Voltage at t = 640ms (b) Voltage at t = 670ms

(c) Voltage at t = 690ms (d) Voltage at t = 720ms

(e) Voltage at t = 770ms (f) Voltage at t = 810ms

Figure 5.14: Same as Figure 5.12 but after the 4th stimulus.
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(a) Voltage at t = 1020ms (b) Voltage at t = 1050ms

(c) Voltage at t = 1110ms (d) Voltage at t = 1140ms

(e) Voltage at t = 1160ms (f) Voltage at t = 1210ms

Figure 5.15: Same as Figure 5.12 but after the 6th stimulus.
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history is shown in Figure 5.11d and the computed biological quantities are shown in

column 6 of Table 5.10. Again, obvious di�erence can be observed on blue curve due

to the e�ect of abnormal [K]o value.
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(a) Voltage at t = 20ms (b) Voltage at t = 110ms

(c) Voltage at t = 390ms (d) Voltage at t = 430ms

(e) Voltage at t = 470ms (f) Voltage at t = 590ms

Figure 5.16: Action potential propagation on tissue of dimensions
51mm � 31mm with abnormal [K ]0 = 11:0 in the same rectangular

region as described in x5.2.2.
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Chapter 6

CONCLUSIONS AND FUTURE

WORK

The main contributions of this work are the following:

� Developed serial, space-parallel, and time-parallel implementations of several

low and high order, explicit and implicit numerical schemes (Super-Time-

Stepping, DuFort-Frankel, RK2imp, RK4, RK45, ...), and compared their

performance on the cable equation for problems of various sizes and various

parameters. The Super-Time-Stepping scheme turned out to be the most

e�cient, by far. This is due to the �ne spatial discretization required in

simulations of propagating action potentials and the very high cost in evaluating

the ionic currents (source term); thus, minimizing the number of evaluations,

which STS does, proved to be unbeatable.

� Developed the Extended Parareal Algorithm (EPA), a new time-and-space

parallel scheme, which combines the advantages of both space-only and time-

only parallelization, to distribute a demanding computational job to multi-

processors more e�ciently. The performance of the new scheme was thor-

oughly analyzed and veri�ed computationally on the cable equation problem.

Compared to the commonly used space-only parallelization and the standard
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Parareal Algorithm for time-only parallelization, the new scheme is highly more

scalable and e�cient, especially for large scale simulations when large number

of processors are available.

� We successfully performed extensive biological simulations of propagating action

potentials in one-dimensional and two-dimensional cardiac tissue. This type of

simulations could not be achieved before on problems of such large size and

�ne grids due to the high computational cost. Parallelization, and in particular

the new time-and-space parallel scheme, provides a powerful computational

method for large scale problems, and it is applicable not only to the problem

disscussed in this dissertation, but also potentially to many high computational

cost problems arising in other research �elds.

This work leads to several future research directions. These include, but not

limited to, the following:

1. Extension to three-dimesions,

2. Implementation of other time stepping numerical schemes,

3. Replacing the Luo-Rudy model with other more sophisticated ionic models.

All of these can be easily done in our highly modular program.

Another very interesting research direction is to employ optimal control theory

and incorprate it into the framework of the time-and-space parallel scheme to

produce optimal electrical de�brillation protocols for control of cardiac arrhythmias.

Similar work has been conducted recently by Nagaiah et al. [37, 38]. Due to high

computational cost and limitation of serial computing their simulations used the

modi�ed FitzHugh-Nagumo model, an overly simpli�ed model with only one gate

variable controlling the ionic source, on a single cell (100 �m) for a very short time (4

milliseconds). With the aid of the time-and-space parallel scheme, simulations could

be performed with more sophisticated models, such as the Luo-Rudy model or newer,

on realistic tissue sizes, to resonably long times.
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Appendix A

Mathematical Formulation of the

Hodgkin-Huxley Model

As mentioned in x2.2.1, the Hodgkin-Huxley model comprises a system of di�erential

equations (2.17)-(2.19). We will present the detailed mathematical formulation of

ionic currents here to complete the description of the model.

In the Hodgkin-Huxley model, the total ionic current Iion consists of three ionic

currents, all depend on the membrane potential V : a sodium current INa, a potassium

current IK , and a leakage current IL, as shown in (2.18). All these three ionic currents

are governed by Ohm's law (I = gV ):

INa = gNa(V � ENa)

IK = gK(V � EK)

IL = gL(V � EL);

(A.1)

where Eion is the equilibrium potential (the potential for which the net ionic current


owing across the membrane is zero), a constant provided by experimental data, and

gion is the ionic membrane conductance. Hodgkin and Huxley postulated that gL is
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a constant, whereas gNa and gK are functions of membrane voltage V to �t their

experimental data. The conductances are of the forms:

gNa = gNam
3h;

gK = gKn
4;

gL = gL;

(A.2)

where gion is a constant representing the maximal conductance.

m is called "activation gate", h is called "inactivation gate" for sodium, and n is

the "activation gate" for potassium. These gate variables, taking values between 0

and 1 and modeling the degree to which corresponding ionic channels are permissive,

are governed by �rst-order ordinary di�erential equations of the same form:

dm

dt
= �m(V )(1�m)� �m(V )m;

dn

dt
= �n(V )(1� n)� �n(V )n;

dh

dt
= �h(V )(1� h)� �h(V )h;

(A.3)

where �'s and �'s are given by explicit formulas (in units of ms�1, with V in mV )

[25]:
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�m(V ) = 0:1(V + 25)

��
exp(

V + 25

10
)� 1

�
;

�m(V ) = 4exp(
V

18
);

�h(V ) = 0:07exp(
V

20
);

�h(V ) = 1

��
exp(

V + 30

10
) + 1

�
;

�n(V ) = 0:01(V + 10)

��
exp(

V + 10

10
)� 1

�
;

�n(V ) = 0:125exp(
V

80
):

(A.4)

A physical interpretation of the gate variables is given in [9]. In the case of

an individual ionic channel is considered, each individual gate can be viewed as a

probability pi representing the probability of this gate being in the permissive state.

In the case of a large number of ionic channels, pi can also be interpreted as the

fraction of gates that are in the peremissive state and (1 � pi) as the fraction in the

non-permissive state.

Similarly, �'s and �'s are called rate constants ([9]), which govern the rate at

which the ion channels transition from non-permissive state to permissive state and

vice versa, respectively.

When the membrane potential V is "clamped" at some �xed value, the gates

approach their steady state values
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m�(V ) =
�m(V )

�m(V ) + �m(V )
;

n�(V ) =
�n(V )

�n(V ) + �n(V )
;

h�(V ) =
�h(V )

�h(V ) + �h(V )
:

(A.5)

These values are solved from (A.3) by setting the derivatives on the left hand side

equal 0. The corresponding time courses for approaching these steady state values

are

�m(V ) = (�m(V ) + �m(V ))
�1;

�n(V ) = (�n(V ) + �n(V ))
�1;

�h(V ) = (�h(V ) + �h(V ))
�1:

(A.6)

Therefore, (A.3) can also be written in the form

dm

dt
=

1

�m(V )
(m�(V )�m);

dn

dt
=

1

�n(V )
(n�(V )� n);

dh

dt
=

1

�h(V )
(h�(V )� h):

(A.7)

One can see from (A.7) that the activation and inactivation gates tend to their

steady state values at rates governed by the time constants �m, �n, and �h, respectively,

which depend purely on the membrane potential V . Thus, activation and inactivation

of the ion channels in the Hodgkin-Huxley model do not respond instantaneously to

change of membrane potential.
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Appendix B

Mathematical Formulation of the

Luo-Rudy Phase I (1991) Model

After having a clear view of the Hodgkin-Huxley model, it is much easier to describe

the Luo-Rudy 1991 model [32] in the same fasion. In this model, Iion is much more

complicated and consists of more ionic currents generated by sodium, potassium and

calcium ions

Iion(V ) = INa(V ) + ISI(V ) + IK(V ) + IK1(T )(V ): (B.1)

The expressions for the ionic currents in equation (B.1) were downloaded from [14]

and will be described in detail here.

� INa is called the fast sodium current and de�ned as

INa = gNa �m3 � h � j � (V � ENa): (B.2)

The reversal potential ENa is calculated by the Nernst Equation

ENa =
RT

zF
log(

[Na]o
[Na]i

); (B.3)
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where R is the gas constant, T the temperature, F Faraday's constant, z the

valence, [Na]o the concentration of sodium outside the membrane and [Na]i

is the concentration of sodium inside the membrane. They are all constants.

Their values and units are shown in Table B.1.

The activation variable m is governed by the ODE

dm

dt
= �m � (1:0�m)� �m �m; (B.4)

where

�m =
0:32 � (V + 47:13)

1:0� e�0:1�(V +47:13)
(B.5)

and

�m = 0:08 � e� V
11:0 : (B.6)

The fast inactivation variable h is governed by the ODE

dh

dt
= �h � (1:0� h)� �h � h; (B.7)

where

�h =

8<: 0:135 � e� 80:0+V
6:8 if V < �40:0

0:0 otherwise
(B.8)

and

�h =

8<: 3:56 � e0:079�V + 310000:0 � e0:35�V if V < �40:0
1:0

0:13�(1:0+e�
V+10:86
11:1 )

otherwise
(B.9)

The slow inactivation gate j is governed by the ODE

dj

dt
= �j � (1:0� j)� �j � j (B.10)
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where

�j =

8<:
(�127140:0�e0:24444�V �0:00003474�e�0:04391�V )�(V+37:78)

1:0+e0:311�(V+79:23) if V < �40:0
0:0 otherwise

(B.11)

and

�j =

8<: 0:1212 � e�0:01052�V

1:0+e�0:1378�(V+40:14) if V < �40:0
0:3 � e0:0000002535�V

1:0+e�0:1�(V+32:0) otherwise
(B.12)

� ISI is called the slow inward current and de�ned as

ISI = 0:09 � d � f � (V � ESI); (B.13)

where

ESI = (7:7� 13:0287 � log(Cai)): (B.14)

The intracellular calcium concentration Cai is governed by the ODE

dCai

dt
= �0:0001 � ISI + 0:07 � (0:0001 � Cai): (B.15)

The activation gate d is governed by the ODE

dd

dt
= �d � (1:0� d)� �d � d; (B.16)

where

�d =
0:095 � e�0:01�(V�5:0)
1:0 + e�0:072�(V �5:0)

(B.17)

and

�d =
0:07 � e�0:017�(V +44:0)

1:0 + e0:05�(V+44:0)
: (B.18)
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The inactivation gate f is governed by the ODE

df

dt
= �f � (1:0� f)� �f � f; (B.19)

where

�f =
0:012 � e�0:008�(V +28:0)

1:0 + e0:15�(V+28:0)
(B.20)

and

�f =
0:0065 � e�0:02�(V +30:0)

1:0 + e�0:2�(V +30:0)
: (B.21)

� IK is called the time-dependent potassium current and de�ned as

IK = gK �X �Xi � (V � EK); (B.22)

where

gK = 0:282 �
r
[K]o
5:4

(B.23)

with [K ]o being the concentration of potassium ions outside the membrane,

which we varied in our experiments for various simulation purposes, and

EK =
R � T
z � F � log(

[K]o + PR NAK � [NA]o
[K]i + PR NAK � [NA]i

): (B.24)

The activation gate X is governed by the ODE

dX

dt
= �X � (1:0�X)� �X �X; (B.25)

where

�X = 0:0005 � e0:083�(V +50:0)

1:0 + e0:057�(V +50:0)
(B.26)

and

�X = 0:0013 � e�0:06�(V+20:0)

1:0 + e�0:04�(V +20:0)
: (B.27)
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The inactivation gate Xi is governed by

Xi =

8<: 2:837�e0:04�(V+77:0)�1:0
(V+77:0)�e0:04�(V+35:0) if V > �100:0
1:0 otherwise

(B.28)

� IK1(T ) is called the total time-independent potassium current, and consists of

three components

IK1(T ) = IK1 + IKp + Ib: (B.29)

The time-independent potassium current IK1 is governed by

IK1 = gK1 �K11 � (V � EK1); with K11 =
�K1

�K1 + �K1
; (B.30)

where

gK1 = 0:6047 �
r
[K]o
5:4

; (B.31)

EK1 =
R � T
z � F � log(

[K]o
[K]i

); (B.32)

�K1 =
1:02

1:0 + e0:2385�((V �EK1)�59:215)
; (B.33)

and

�K1 =
0:49124 � e0:08032�((V+5:476)�EK1) + e0:06175�(V�(EK1+594:31))

1:0 + e�0:5143�((V �EK1)+4:753)
: (B.34)

Unlike [K]o, the concentration of potassium inside the memebrane [K]i is set

to be a constant.

The plateau potassium current IKp is governed by

IKp = gKP �KP � (V � EKP ); (B.35)
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where

Kp =
1:0

1:0 + e
7:488�V

5:98

(B.36)

and

EKP = EK1: (B.37)

The background current Ib is governed by

Ib = gB � (V � EB): (B.38)

Table B.1: Constants in Luo-Rudy (1991) model

Symbol Meaning Unit value

R Gas constant joules=mole 8314
T Temperature degree 310.0
F Faraday's constant coulombs=mole 96484.6

g Na conductance of sodium mS=cm2 23.0
PR NAK permeability ratio of Na and K | 0.01833

gKP potassium conductance mS=cm2 0.0183
EB equilibrium current in backgroud mV -59.87
gB max. leakage conductance mS=cm2 0.03921

[NA]o sodium concentration outside membrane mM 140.0
[NA]i sodium concentration inside membrane mM 18.0
[K]i potassium concentration inside membrane mM 145.0
z Valence | 1.0
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