
Draft of

Proceedings of the 40th Annual Conference of The Pennsylvania
Association of Computer Science and Information Science Educators

(PACISE 2025)

April 4th – 5th 2025

Hosted by:

Faculty Articles

An Audiovisual Demo Platform as an Interactive Kiosk for
Engagement in Computing

David G. Cooper
Department of Computer Science

West Chester University
West Chester, PA, USA
dcooper@wcupa.edu

ABSTRACT
Interactive Kiosks have been used in museums and rural settings
as a way to introduce people to new areas of study, to allow people
to learn in a self-paced way, and to connect with people who are
interested in the topic that the kiosk is presenting. This paper
explores an exploration into modifying an existing demo of an
audiovisual recording and labeling platform to make a kiosk-like
system for passers-by in a university setting to label live video clips
using a mobile application downloaded from an app store. This
work describes the transformation of the recording system into
an interactive kiosk, the way that people engage with the kiosk,
and lessons learned when designing a system that will be entirely
unattended once deployed.
ACM Reference Format:
David G. Cooper. 2025. An Audiovisual Demo Platform as an Interactive
Kiosk for Engagement in Computing . In Proceedings of 40th Annual Spring
conference on of the Pennsylvania Computer and Information Science Educators
(PACISE ’25). ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
The Computer Science Department of a University in the North-
eastern Part of the United States has a display case in the hallway
where a Single Board Computer such as a Raspberry Pi is connected
to a display and information related to the department is shown.
This display sometimes has results of competitions or videos of
student research in order to showcase what is happening in the
department. A number of faculty suggested that a more interac-
tive display be used so that people passing by the display will stay
longer and engage with the items in the display case. In addition it’s
an opportunity for people to get a glimpse of computing through
interaction rather than just passive viewing of what is in the display
case.

With the goal of an interactive system in mind, the process of
using a demo of an audiovisual recording and labeling system as an
interactive display was initiated. The process stared by attempting
to run the demo as is, and see what kind of engagement ensued.
In the first couple of days of the system running the demo, the
system had to be restarted many times, so it was difficult to identify

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PACISE ’25, April 4-5, 2025, West Chester, PA
© 2025 Association for Computing Machinery.

how much, if any engagement was happening with the system.
This led to a number of stability tests and enhancements. Then the
system was tested again, and additional enhancements were made
to give more transparency of the information saved by labeling the
video. The rest of this paper will discuss related work in interactive
kiosks for informal computational learning, and the journey from a
demo system meant to work for a couple of hours to a kiosk system
capable of working indefinitely with little or no maintenance or
interaction needed from the people deploying the system.

2 RELATEDWORK
The related work to our proposed method discusses work that uses
Raspberry Pi devices or other single board computers as different
types of kiosks in museums, rural settings, and schools.

Some of the earliest work of using a Raspberry Pi as a kiosk de-
scribes a system that will automatically play and loop a slideshow
provided either as images or a slideshow file in a specified location
on the Raspberry Pi’s SSD or network mounted drive [5]. More
recent work has shown how a Raspberry Pi 4 along with an Ar-
duino and some additional sensors including a webcam, can be
used to provide an interactive touchscreen experience similar to
more expensive interactive information kiosks [6]. [5] has a high
likelihood of being stable, since there is no interaction, and the
startup of the system is automatic, but they do not address ques-
tions of how the system handles unexpected reboots due to power
failure or other software reasons. [6] does not discuss how long the
system works without needing to be restarted, nor do they discuss
how they achieve a "plug-and-play" system. In addition, though
Raspberry Pi computers have been around for a while, and the
most recent paper was published over four years prior to writing,
there is not a prevalence of Raspberry Pi based kiosk systems. This
suggests, that the ease with which to convert a Raspberry Pi or
similar single board computer to a plug and play kiosk may not be
as straightforward as suggested by these works.

When the internet was becoming popular, some experiments
were done introducing ruggedized computers in rural areas so that
children could learn about computers and the internet in a hands
on way without any instruction [1–4]. [7] describes the BingBee
kiosk designed to expose children to ideas around computational
thinking, and it allows them to explore these ideas interactively
through a ruggedized input device called the ticklepad. Though
most college students have access to computers, there are many
things not related to computation available to them while using
computers. This motivates the interest of making a demo available
in a kiosk style environment to allow students and other people
passing by to learn about it on their own terms.

PACISE ’25, April 4-5, 2025, West Chester, PA David G. Cooper

3 SYSTEM OVERVIEW
The hardware of the demo used consists of a server that includes
an Orange Pi 5 with 16GB of RAM, an edimax Bluetooth adapter,
a Logitech 720p web camera, and client iOS and Android devices
with the labeling app. The server, shown in Figure 1 has a specially
written java program that connects to the camera and Bluetooth
and logs QR codes received on the camera and Bluetooth messages
that come from the client in order to enable plots of the messages
received from the clients as well as create video clips based on the
client labels.

Figure 1: The Orange Pi 5 with an Edimax Bluetooth adapter
and a Logitech web camera is displaying the kiosk server
software.

The demo system streamlines the labeling of user activities
through a series of coordinated processes. Once the server is run-
ning. A person passing by will scan the QR code to find out how to
download the labeling software, then they download the software.
When they run the labeler app, they first fill out the information on
the calibration page as shown in Figure 2 and become a participant.
Once they click ‘calibrate’, the app will start displaying a QR code
that changes every second, Figure 3. The participant will then show
the QR code to the camera, wait for a blue box to show up around
the QR code in the live video part of the display (Figure 4), and
then holds the QR code steady for at least one second to get the
best calibration time. The Participant id then shows up in listing of
the Main panel as shown in Figure 5 Then a participant can label as
many Emotion, Class Action, or Move Action activity labels. Each
time the participant submits a label, a ten second clip is added to
the video clips display on the upper right of the display, as shown
in Figure 6.

4 STEP 1: USING THE DEMO SOFTWARE AS-IS
The first attempt to use the audiovisual demo software was to copy
it to the Raspberry Pi 4 with 4 GB of ram that the department
already had running in the display case. This involved installing
the required software onto the Raspberry Pi 4 and adding a camera.
It turned out that even though the Raspberry Pi 4 has a working
Bluetooth LE capability, it failed at least half of the time the program
tried to use it. So, the edimax bluetooth adapter was also added to
the Raspberry Pi 4 setup. The demo needed a java program to be
run from the command line, and a port needed to be selected for

Figure 2: An alphanumeric Participant ID, a Hexadecimal
Short ID, and a Hexadecimal session ID are specified before
the calibrate button is pushed.

Figure 3: After calibration is pressed, the QR code begins to
display and updates every second with the current time of
the labeler.

the video input. In addition, since there was nothing in the demo
system that described how to use it, 2 additional windows were
presented on the screen in the display case. The first was a web
page with a qr code for downloading the app, and the second was
instructions on how to send labels to the system. This is shown
in Figure 8. There were a number of difficulties with this setup.
The first is that when there was a power outage, the system didn’t
automatically open again. The second is that the demo would get
stuck after a couple of hours for various reasons. 1. If messages
came in from different sources in a particular order, occasionally,
this would make the display freeze. 2. Occasionally the bluetooth
scanner would fail and would need the program to be reset for it to
start up again. 3. Sometimes the program would just abort without
explanation.

An Audiovisual Demo Platform as an Interactive Kiosk for Engagement in Computing
PACISE ’25, April 4-5, 2025, West Chester, PA

Figure 4: This is the part of the screen where live video is
displayed.

Figure 5: After the QR code is detected, the participant id
shows up in the Main panel.

Figure 6: This is the part of the screen where video clips loop
and the corresponding label is displayed below each looped
video clip.

5 STEP 2: MAKING THE DEMO SOFTWARE
MORE ROBUST

After having the demo “running" for about a week with a need to
restart the demo more than once each day, an effort was made to
try to break the system in a lab setting so that the logs and other
details could be observed as the messages were coming in. There
are a number of things that were found that were causing issues.
1. Sometimes when a Bluetooth message was received, the wrong
thread was used when updating the GUI causing a crash or an
unresponsive GUI. 2. After a long time sometimes the thread pool
would run out of threads.

The demo has 5 parts that are directly connected with receiving
messages. When the message is received, two tables and one chart
is updated. Since Bluetooth LE Broadcast messages are handled on
their own thread, when these changes happen, they notify the GUI
thread to update. Some of these notifications must happen from the
GUI thread. Specifically, in Java FX, the modification of GUI objects
that are visible must happen on the GUI thread otherwise there
can be a concurrent modification exception. Using the GUI thread
is done by putting the code that changes the GUI objects into a

Figure 7: On the left is the demo. On the right is the text file
of instructions for people to use the demo.

Runnable and passing the Runnable into the Platform.runLater()
method. The particular offending call in the case of our software
was a scrollTo() method that sometimes had no effect, sometimes
was called when the table was not displayed yet, and sometimes
had an effect and the table was visible, so the GUI thread would
crash. When this happened, an exception and stack trace would be
in the output log of the program, so it was easier to track down and
fix the bug.

The second bug of the scanner randomly failing wasmuch harder
to track down. On the Raspberry Pi Platform the error message was
just an abort with no reason, and it typically happened overnight so
it was unclear. When running on the Orange Pi 5, the error didn’t
appear to happen overnight, so we kept the system running until
it would stop. There were a number of power outages that would
cause the whole system to restart, so it took many days of waiting
to find out the reason for the failure. Once the failure did happen,
the messages that were shown didn’t throw an exception, it just
failed quietly. After finding which exception was most likely the
culprit and adding a stack trace, it appears that the cause of the
problem is running out of threads, possibly caused by running out
of memory. Since this was happening in the Bluetooth library code,
there are only two potential solutions. The first is to restart the
program regularly and before the error occurs. The second is to try
to update the Bluetooth library code and hope that the error has
been fixed in the latest version. Since the update would require a
lot of additional testing, the program restart solution was chosen
in the interest of getting a working kiosk in a shorter time.

6 STEP 3: ADDING MORE ENGAGING
FEATURES

After having worked out what appear to be the last outstanding
problems to having a working kiosk that can run unattended, a
few features needed to be added for the observers to see what was
being demonstrated. When a person is demonstrating the system,
the demonstrator can explain how the viewer can start labeling,
what is happening as the message comes in, and guide the viewer’s

PACISE ’25, April 4-5, 2025, West Chester, PA David G. Cooper

gaze to look at the parts that are relevant to the most recent mes-
sage received. In addition, the demonstrator can describe how the
message received can be converted to a saved video clip.

However, without a demonstrator, it’s possible and even likely
that a person passing by will look at the screen and have no idea
that they can download an app and interact with the system. There
are a number of additional features to add to the demo to make
it more likely for interaction. The first addition is a qr code that
brings the user to a web page that describes how to download the
app and interact with the system. The second addition, is to add a
clip playback functionality that plays the most recent clip or clips
that were acquired through the labeling interaction with the system.
The final version is shown in Figure ??

Figure 8: The final display for the kiosk. The upper left is
the live video. The upper right is the video clip loop. In be-
tween are the participant labels and the detail labels for each
participant. The detail labels change based on who the last
participant that a label was received from. The lower part
of the display has 3 pie charts. One for each type of label,
Emotion, Class Action, or Move Action. And finally there is
a QR code to access a description of how to use the kiosk.

Adding the QR code is straightforward with javafx, because an
image element can be added as well as a link to the image file that
has the QR code. If there is potential for the QR code to change,
then the image element can be given an id so that it can be changed
programmatically in java. The QR code then links to a web page
that has directions on how to download the app, and how to use
the app to label the video. There is also a description on what to
enter into the calibration page to start the interaction.

The clip playback functionality requires an additional video pane
in the GUI, a fixed size video buffer that is big enough to grab the
clips based on the labels sent over bluetooth, and then a list of video
buffers for playback into the video pane. As messages come into the
system, the time of the message is matched with the video frame,
and a clip is made that has the ten seconds preceding the time that
the label was sent from the labeler app. This clip is then added to
the list of video buffers meant for the playback video pane. The list
is looped through, playing each clip in turn until the demo program
is stopped.

7 FUTURE SCOPE: MAKING A KIOSK MODE
There are still a couple of steps that are yet to be implemented so
that the server can work in kiosk mode. The first is that the script
to run the server needs to be called, and the second is that the
program needs to restart every night. An additional feature that
could be nice is to add a feature that will save the video clips as
files so that when the kiosk is restarted it can reload the video clips
as if it had never stopped.

8 CONCLUSION
Though single board computers are an inexpensive option for cre-
ating interactive kiosks, this case study in converting a demo into
an interactive kiosk describes some of the difficulties that can come
up, and the process that was taken to surmount those difficulties.

9 ACKNOWLEDGEMENTS
This work is the research product of undergraduate and gradu-
ate students at Cheyney University, Drexel University, and West
Chester University. I’d like to thank Salamata Bah, Ines Constant,
Medeline Cooke, Isaiah DeSantis, Ramon Estevez, Olivia Harley, Es-
hwar Sai Ram Mamillapalli, Justin McGriff, Tashawn Patton-Taylor,
Srijan Pandey, Darril Vilbrun, Erin Ward, Jake Winemiller, and
Daria Washington. A portion of this work was supported by the
National Science Foundation under Grant No. HRD-1912011.

REFERENCES
[1] Savita Bailur, Renee Kuriyan, Joyojeet Pal, Aishwarya Ratan, Janaki Srinivasan,

Kentaro Toyama, Rajesh Veeraraghavan, Akshaya Namma Dhwani, Azim Premji,
and One Roof. 2007. Review of research on rural PC Kiosks. Microsoft Research
India (2007).

[2] Kim Gush and Ruth de Villiers. 2010. Application usage of unsupervised digital
doorway computer kiosks in remote locations in South Africas. In Proceedings
of the 2010 Annual Research Conference of the South African Institute of Computer
Scientists and Information Technologists. 93–103.

[3] Parimala Inamdar. 2004. Computer skills development by children using ’hole in
the wall’ facilities in rural India. Australasian Journal of Educational Technology
20, 3 (2004).

[4] Parimala Inamdar and Arun Kulkarni. 2007. ’Hole-In-The-Wall’ computer kiosks
foster mathematics achievement- A comparative study. Journal of Educational
Technology & Society 10, 2 (2007), 170–179.

[5] Raleigh Clayton Muns. 2013. Portable Display Kiosk and Signage Using the
Raspberry Pi. In Brick & Click Libraries: An Academic Library Symposium, Vol. 13.
ERIC, 68–71.

[6] Asm Mehedi Hasan Sad, Md Mashrur Sakib Choyon, Abu Hasnat Md Rhydwan,
and Chowdhury Akram Hossain. 2020. An interactive low-cost smart assistant
system: Information kiosk as plug & play device. In 2020 27th Conference of Open
Innovations Association (FRUCT). IEEE, 193–199.

[7] Peter Wentworth. 2010. BingBee@ RaglanRoad-A field trial with unattended
educational kiosks. In 2010 IST-africa. IEEE, 1–8.

MAKING QUANTUM COMPUTING ACCESSIBLE: A PATH FOR CS
MAJORS WITH LIMITED FOUNDATIONS

Jingnan Xie
Millersville University of Pennsylvania, Computer Sciences Department

jingnan.xie@millersville.edu

ABSTRACT
As quantum computing continues to advance, its transforma-
tive potential in fields such as cryptography, material science,
and machine learning is undeniable. However, incorporating
quantum computing into computer science curricula remains
a significant challenge due to the steep learning curve posed
by quantum mechanics and the heavy reliance on physics
concepts. To address this, we propose an approach to quan-
tum computing education tailored for computer science stu-
dents, aimed at making complex concepts accessible through
a focus on linear algebra. In this paper, we summarize nine
key linear algebra concepts essential for understanding quan-
tum computing and express the four postulates of quantum
mechanics from a linear algebra perspective. Additionally,
we provide practical materials and hands-on resources that
educators can easily adapt for their own courses, fostering
broader adoption of quantum education. By lowering barri-
ers to entry, this work empowers both students and educators
to engage with quantum computing, helping to prepare a ca-
pable workforce for this transformative technology.

1 Introduction

Quantum computing leverages the principles of quantum me-
chanics, such as superposition and entanglement, to process
information in fundamentally different ways compared to
classical computing (see [1] for a detailed introduction). In
recent years, the field has advanced rapidly, with significant
progress in both theoretical research and practical applica-
tions. In December 2024, Google’s parent company, Alpha-
bet, introduced the Willow quantum computing chip, which
claims to solve a problem in five minutes, a task that would
take classical computers an impractically long time to com-
plete. Similarly, in November 2024, IBM unveiled its most
advanced quantum computers, suggesting enhanced compu-
tational capabilities and potential breakthroughs in fields such
as cryptography, material science, and machine learning. Be-
yond research laboratories, industries are investing heavily
in quantum technologies, with applications in cryptography,
material science, and machine learning driving this momen-
tum. As quantum computing moves from theoretical research
into practical applications, the need to educate the next gen-
eration of computer scientists has become a strategic priority
(see [2] and [3]).

Despite its significance, quantum education remains in its
infancy (see [3]). While some universities have introduced
quantum courses, the subject has yet to be broadly inte-
grated into standard computer science curricula. This lack of
widespread adoption is partly due to the steep learning curve
associated with quantum mechanics, a discipline traditionally
grounded in physics. Concepts such as the spin of electrons,
the behavior of particles at quantum scales, and wave-particle
duality require a level of familiarity with physics that most
computer science undergraduates lack. These challenges are
compounded by the use of specialized notations and termi-
nologies that can overwhelm students without prior exposure.

Yet, the urgency to overcome these barriers cannot be over-
stated. As quantum technologies continue to mature, the de-
mand for a workforce capable of designing, programming,
and applying quantum systems will only grow. The democ-
ratization of quantum education is essential to meet this need
and ensure that a diverse array of students can participate in
shaping this transformative field.

By taking a computer science perspective, this approach
makes quantum computing concepts more accessible, signif-
icantly reducing the need for extensive physics knowledge.
This paper not only highlights key foundational concepts, but
also provides hands-on materials and resources that educa-
tors can easily adapt to create their own quantum computing
courses. With this framework, we aim to lower barriers and
empower educators to initiate quantum computing education
within the computer science community. This effort repre-
sents a crucial step toward making quantum computing both
practical and inclusive, ensuring that it reaches a broader au-
dience of students and educators.

2 Related Work

Quantum computing education is an evolving field that is
gaining considerable attention in academic settings, partic-
ularly in computer science programs. The recent literature
emphasizes innovative teaching approaches and curricula de-
signed to make quantum concepts more accessible to stu-
dents.

Several studies have focused on the integration of quantum

mailto:jingnan.xie@millersville.edu

computing into existing computer science programs. For in-
stance, the development of modular and scaffolded learning
frameworks helps students progressively understand complex
topics, reducing the intimidation often associated with quan-
tum mechanics. These frameworks facilitate the incremen-
tal acquisition of knowledge, allowing students to seamlessly
connect classical computer science principles with quantum
theories [4], [5].

Moreover, hands-on experience with real quantum comput-
ing platforms has become an essential component of effective
instruction. Recent education initiatives encourage students
to use cloud-based quantum computing platforms like IBM
Q and Microsoft Quantum Development Kit, where they can
run experiments and manipulate quantum circuits. This expe-
riential learning not only reinforces theoretical concepts, but
also prepares students to tackle real-world challenges posed
by quantum technologies [6].

Game-based learning and simulations have been shown to
improve participation among students learning about quan-
tum computing. Studies illustrate that integrating playful ele-
ments into the curriculum, such as serious games designed to
teach quantum principles, can significantly improve the un-
derstanding and retention of students of complex concepts
while fostering enthusiasm for the subject matter [7], [8].

Furthermore, research emphasizes the importance of interdis-
ciplinary approaches in quantum computing education. By
engaging students from various academic backgrounds, in-
cluding physics, mathematics, and computer science, ed-
ucators can create a richer learning environment that pro-
motes collaborative techniques to understand quantum com-
puting [9].

Lastly, there is a growing focus on equity and inclusivity
within quantum computing education. Recent articles high-
light initiatives aimed at attracting underrepresented groups
into STEM fields, specifically quantum technology. Tailored
outreach programs and mentorship opportunities are essen-
tial to build a diverse pipeline of future quantum computing
professionals and to ensure that the field benefits from a wide
range of perspectives [10].

The findings from these studies collectively illustrate that by
employing diverse pedagogical strategies, promoting practi-
cal experiences, and emphasizing inclusivity, educators can
effectively prepare students for the future of quantum tech-
nologies.

3 Pedagogical Approach and Essential Con-
cepts

Traditional quantum computing courses often introduce
fundamental concepts like superposition and entanglement
through physical examples, such as photon polarization or
electron spin. These approaches, rooted in physics, require
students to grasp additional concepts, such as electromagnetic

waves and quantum measurements, which can be challenging
for computer science students without a solid background in
physics (for example, see [11]).

In contrast, this paper takes a linear algebra-based approach,
similar to [4], drawing on concepts familiar to most com-
puter science majors. By presenting quantum computing
as a generalization of classical probabilistic computing and
abstracting physical phenomena through linear algebra, the
course minimizes the need for specialized physics knowl-
edge. As described in [4], concepts like superposition and en-
tanglement are framed as properties of unit vectors in Hilbert
spaces, and quantum gates are introduced as simple opera-
tions on these vectors, avoiding the need for complex number
manipulation.

One key distinguishing feature of our approach is its focus
on computational theory rather than quantum programming.
Given the limited commercial success of quantum program-
ming languages and their experimental nature, the course em-
phasizes the computational parallels between classical and
quantum devices [12], [13] and [14]. This approach not only
deepens understanding of quantum complexity classes but
also enhances the connection to classical computation theory.
By emphasizing these core theoretical concepts, the course
helps learners appreciate the foundational principles of classi-
cal computation and recognize its computational limits. This
perspective allows for a deeper comprehension of both clas-
sical and quantum computing, reinforcing their interrelation-
ship. Focusing on theory, rather than experimental program-
ming languages, provides a more practical and meaningful
introduction to quantum computing.

In the following, we outline some of the most fundamental
topics covered in our approach. These concepts are designed
to be accessible, requiring only a minimal mathematical back-
ground, especially in the early stages. As learners progress,
they gradually build upon this foundation, enhancing both
their understanding of quantum computing and their math-
ematical skills. This approach allows readers to easily adapt
these materials for their own educational efforts, even with
limited prior experience.

3.1 Linear Algebra

1. Complex Numbers
Let R and C denote the set of real numbers and the set
of complex numbers, respectively. A complex number
c ∈ C is written in its standard form as

c = a+ bi,

where a, b ∈ R, and i is the imaginary unit satisfying
i2 = −1.
The conjugate of c is denoted by c∗ and is given by

c∗ = a− bi,

The magnitude or length or modulus of c ∈ C is

|c| =
√
c · c∗ =

√
a2 + b2

2. Complex Vectors
Complex vectors shall be crucial since they represent
quantum states (more details are discussed in section
3.2). Let |ψ⟩ ∈ Cd denote a complex (column) vector:

|ψ⟩ =

ψ1

ψ2

...
ψd

 ,

where each entry ψi ∈ C for i = 1, 2, . . . , d.
The notation |·⟩ is referred to as Dirac notation, and is
read as “ket”. The dual representation of |ψ⟩, denoted as
⟨ψ| and read as ”bra,” is the conjugate transpose (Hermi-
tian conjugate) of |ψ⟩. It is represented as a row vector:

⟨ψ| = (ψ∗
1 , ψ

∗
2 , . . . , ψ

∗
d).

Exercise 3.1. Given |ψ⟩ =
(
1
i

)
, what is ⟨ψ|?

Solution: The conjugate of 1 is 1∗ = 1, and the conju-
gate of i is i∗ = −i. Therefore, ⟨ψ| = (1 −i) .

3. Matrix Operations
Since we require some essential matrix operations, let
us review them briefly. Let A be a matrix, and A(i, j)
represent the entry of A in the i-th row and j-th column.
The following operations are defined as:

• Conjugate of A: A∗(i, j) = (A(i, j))
∗.

• Transpose of A: AT (i, j) = A(j, i).
• Adjoint (also called conjugate transpose, Hermi-

tian conjugate, or dagger) of A: A† = (A∗)
T .

Example 3.1. Let A =

(
1 2
3 4

)
. Then, the transpose

of A is given by:

AT =

(
1 3
2 4

)
.

Let A and B be two matrices. The dot product (multi-
plication) of A and B is given by

A ·B(i, j) =

d∑
k=1

A(i, k) ·B(k, j).

Example 3.2. Let

A =

(
1 2
3 4

)
, B =

(
4 3
2 1

)
,

then

A ·B =

(
1 · 4 + 2 · 2 1 · 3 + 2 · 1
3 · 4 + 4 · 2 3 · 3 + 4 · 1

)
=

(
8 5
20 13

)
.

Exercise 3.2. Let

A =

(
1 2 3
4 5 6
7 8 9

)
, B =

(
9 8 7
6 5 4
3 2 1

)
.

What is A ·B?

4. Inner Product
Given two vectors |ψ⟩ and |ϕ⟩, the inner product of them
is denoted by ⟨ψ|ϕ⟩, and is defined as

⟨ψ|ϕ⟩ =
d∑

i=1

ψ∗
i · ϕi.

The inner product measures the ”overlap” (or similarity)
between the two vectors. If ⟨ψ|ϕ⟩ = 0, then the vectors
are orthogonal, and if ⟨ψ|ϕ⟩ = 1, then the vectors are
aligned in the same direction.

Exercise 3.3. Let |ψ⟩ =
(
1
i

)
and |ϕ⟩ =

(
2
3i

)
. Com-

pute their inner product.

Solution:

⟨ψ|ϕ⟩ = (1− i) ·
(
2
3i

)
= 1 ·2+(−i) ·(3i) = 2+3 = 5.

Note that the inner product returns a scalar, and we have

(⟨ψ|ϕ⟩)∗ = ⟨ϕ|ψ⟩.

5. Euclidean Norm
The Euclidean norm (2-norm) of a vector |ψ⟩ is denoted
by ∥|ψ⟩∥2, and is given by

∥|ψ⟩∥2 =
√

⟨ψ|ψ⟩ =

√√√√ d∑
i=1

ψ∗
i ψi =

√√√√ d∑
i=1

|ψi|2.

Exercise 3.4. Let |ψ⟩ =

(
3 + 4i
1− i

)
. Compute its Eu-

clidean norm.

Solution:

∥|ψ⟩∥2 =
√
(3 + 4i)∗(3 + 4i) + (1− i)∗(1− i) = 3

√
3.

6. Outer Product
For two vectors |ψ⟩, |ϕ⟩ ∈ Cd, the outer product |ψ⟩⟨ϕ|
yields a d× d matrix.

Example 3.3. Let |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
.

|0⟩⟨0| =
(
1
0

)
(1 0) =

(
1 0
0 0

)

|1⟩⟨0| =
(
0
1

)
(1 0) =

(
0 0
1 0

)
Exercise 3.5. Exercise: Let |ψ⟩ =

(
3

2− i

)
. What is

|ψ⟩⟨ψ|? Solution:

|ψ⟩⟨ψ| =
(

3
2− i

)
(3 2 + i)

=

(
9 6 + 3i

6− 3i 4− (i)2

)
=

(
9 6 + 3i

6− 3i 5

)

7. Linear Operators
A linear operatorA is a d×dmatrix that maps Cd → Cd

with the following linear property:

A

(∑
i

ai|ψi⟩

)
=
∑
i

aiA|ψi⟩,

where ai ∈ C and |ψi⟩ ∈ Cd.
The matrix element is a scalar quantity that provides in-
formation about how the operator A acts on the state |ψ⟩
and how the resulting state overlaps with the state |ϕ⟩.

⟨ϕ|A|ψ⟩ = ⟨ϕ|(A|ψ⟩) =
∑
i,j

ϕ∗i (A(i, j)ψj),

where ϕ∗i is the complex conjugate of the i-th component
of |ϕ⟩,A(i, j) is the (i, j)-th entry of the operatorA, and
ψj is the j-th component of |ψ⟩.

Example 3.4. Given |ψ⟩ =

(
1
0

)
, |ϕ⟩ =

(
0
1

)
, A =(

2 3
1 4

)
,

⟨ϕ|A|ψ⟩ = ⟨ϕ|
(
2 3
1 4

)(
1
0

)
= (0 1)

(
2
1

)
= 1.

Thus, ⟨ϕ|A|ψ⟩ = 1.

8. Orthonormal Bases
A set of vectors {|ψi⟩} ⊆ Cd is said to be orthogonal if
for all i ̸= j, ⟨ψi|ψj⟩ = 0. The set is orthonormal if

⟨ψi|ψj⟩ =
{
0, if i ̸= j,

1, if i = j.

Hence, each vector satisfies ∥|ψi⟩∥2 = 1, and every dis-
tinct pair of vectors is orthogonal.
For every vector in Cd, it can be expressed as a linear
combination of an orthonormal basis. For example, in

C2, the most common basis is |0⟩ =

(
1
0

)
and |1⟩ =(

0
1

)
. Any vector |ψ⟩ ∈ C2 can be written as

|ψ⟩ = α|0⟩+ β|1⟩,

where α, β ∈ C. We say that |ψ⟩ is normalized if
∥|ψ⟩∥2 = 1, which is equivalent to

|α|2 + |β|2 = 1.

Exercise 3.6. Why ∥|ψ⟩∥2 = 1 is equivalent to |α|2 +
|β|2 = 1?

Solution: ∥|ψ⟩∥2 =
√
⟨ψ|ψ⟩ = ⟨α|0⟩ + β|1⟩, α|0⟩ +

β|1⟩ = (α∗⟨0| + β∗⟨1|)(α|0⟩ + β|1⟩) = |α|2⟨0|0⟩ +
α∗β⟨0|1⟩+ β∗α⟨1|0⟩+ |β|2⟨1|1⟩ = |α|2 + |β|2 = 1

9. Eigenvalues and Eigenvectors
Given a matrix A, an eigenvector |ψ⟩ is a non-zero vec-
tor that satisfies the equation

A · |ψ⟩ = λ|ψ⟩
for some scalar λ ∈ C. We call λ the corresponding
eigenvalue of A.
Example 3.5. Show that |+⟩ = 1√

2
(|0⟩+ |1⟩) is an

eigenvector of A =

(
0 1
1 0

)
.

A|+⟩ =
(
0 1
1 0

)
1√
2
(|1⟩+ |0⟩) = 1√

2

(
0 1
1 0

)(
1
1

)
=

1√
2

(
1
1

)
= |+⟩

Thus, |+⟩ is an eigenvector of A with eigenvalue λ = 1.
Exercise 3.7. Show that |−⟩ = 1√

2
(|0⟩ − |1⟩) is also an

eigenvector of A =

(
0 1
1 0

)
and find the corresponding

eigenvalue.
Solution:

A|−⟩ =
(
0 1
1 0

)
1√
2
(|0⟩ − |1⟩) = 1√

2

(
0 1
1 0

)(
1
−1

)
=

1√
2

(
−1
1

)
= − 1√

2

(
1
−1

)
= −|−⟩

Thus, |−⟩ is an eigenvector of A with eigenvalue λ =
−1.
We can find the eigenvalues of a matrixAwithout know-
ing the eigenvectors. The eigenvalues satisfy the charac-
teristic equation:

det(A− λI) = 0

where det denotes the determinant and I is the identity
matrix. Let us first review how to compute the determi-
nant with some examples.
Example 3.6. ∣∣∣∣1 2

2 4

∣∣∣∣ = 1 · 4− 2 · 2 = 0

∣∣∣∣∣1 2 3
4 5 6
7 8 9

∣∣∣∣∣ = 1·5·9+2·6·7+3·4·8−3·5·7−1·6·8−2·4·9

= 45 + 84 + 96− 105− 48− 72 = 0

Example 3.7. Let A =

(
0 −i
i 0

)
. Compute its eigen-

values.
Solution:

det(A− λI) = 0

A− λI =

(
−λ −i
i −λ

)
det(A− λI) = (−λ)(−λ)− (−i)(i) = λ2 − 1 = 0

λ2 = 1
λ = ±1

3.2 Quantum Mechanics

With linear algebra at hand, the four postulates of quantum
mechanics can be stated, addressing the following questions:
How to represent a single quantum system, how to perform
operations on a quantum system, how to describe multiple
quantum systems, and how to measure classical information
from a quantum system.

Postulate 1: Individual Quantum Systems

Recall that in classical computing, a bit is either 0 or 1. In the
quantum world, a quantum bit, or qubit, can take on not just
0 or 1, but a state that reflects the possibility of being both 0
and 1 simultaneously. Let us formalize this phenomenon.

First, we encode the bits 0 and 1 via the standard orthonormal
basis vectors |0⟩ and |1⟩ in C2. Then, to denote a qubit in
states |0⟩ and |1⟩ simultaneously, we write:

|0⟩+ |1⟩.

This is called a superposition.

More generally, the contribution of |0⟩ and |1⟩ is controlled
by the amplitudes α, β ∈ C, i.e.,

|ψ⟩ = α|0⟩+ β|1⟩.

The only restriction is that |ψ⟩ must be normalized (a unit
vector), i.e.,

|α|2 + |β|2 = 1.

In summary, any unit vector in C2 describes the state of a
single qubit.

Example 3.8. |+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ =

1√
2
(|0⟩ − |1⟩) are two widely mentioned single-qubit states.

Postulate 2: Quantum Operations

Recall that a linear operator acts on the state vector and is
represented by a matrix. The matrix must be with dimensions
d×d to operate on a state in Cd. A quantum operation is rep-
resented by a linear operator, which must be a unitary matrix.
A matrix U is unitary if it satisfies the condition

UU† = U†U = I,

where U† is the Hermitian conjugate (or adjoint) of U , and I
is the identity matrix. Therefore, U† is the inverse of U .

Example 3.9. Pauli-X gate:

X =

(
0 1
1 0

)
X† =

(
0 1
1 0

)
, XX† = X†X =

(
1 0
0 1

)
.

Pauli-Y gate:

Y =

(
0 −i
i 0

)
Y † =

(
0 −i
i 0

)
, Y Y † = Y †Y =

(
1 0
0 1

)
.

Pauli-Z gate:

Z =

(
1 0
0 −1

)
Z† =

(
1 0
0 −1

)
, ZZ† = Z†Z =

(
1 0
0 1

)
.

Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
H† =

1√
2

(
1 1
1 −1

)
, HH† = H†H =

(
1 0
0 1

)
.

Exercise 3.8.

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1⟩,

X|1⟩ =
(
0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0⟩.

Hence, X is also called the quantum OR gate.

Y |0⟩ =
(
0 −i
i 0

)(
1
0

)
=

(
0
i

)
= i|1⟩,

Y |1⟩ =
(
0 −i
i 0

)(
0
1

)
=

(
−i
0

)
= −i|0⟩.

Z|0⟩ =
(
1 0
0 −1

)(
1
0

)
=

(
1
0

)
= |0⟩,

Z|1⟩ =
(
1 0
0 −1

)(
0
1

)
=

(
0
−1

)
= −|1⟩.

Z|+⟩ = Z

(
1√
2
(|0⟩+ |1⟩)

)
=

1√
2
(Z|0⟩+ Z|1⟩)

=
1√
2
(|0⟩ − |1⟩) = |−⟩.

H|0⟩ = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
= |+⟩,

H|1⟩ = 1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
= |−⟩.

H|+⟩ = H

(
1√
2
(|0⟩+ |1⟩)

)
=

1√
2
(H|0⟩+H|1⟩)

=
1√
2

(
1√
2
(|0⟩+ |1⟩) + 1√

2
(|0⟩ − |1⟩)

)
= |0⟩.

H|−⟩ = H

(
1√
2
(|0⟩ − |1⟩)

)
=

1√
2
(H|0⟩ −H|1⟩)

=
1√
2

(
1√
2
(|0⟩+ |1⟩)− 1√

2
(|0⟩ − |1⟩)

)
= |1⟩.

Postulate 3: Composite Quantum Systems

So far, we have only considered single-qubit systems. How-
ever, a computer with just a single qubit is not very useful. To
perform more complex computations, we need to combine
multiple qubits. The tool for this task is the tensor product,
denoted by ⊗. Formally, for two vectors |ψ⟩ and |ϕ⟩ in C2,
the tensor product |ψ⟩ ⊗ |ϕ⟩ is a vector in C4, with

(ψ ⊗ ϕ)ij = ψiϕj .

This expresses that the (i, j)-entry of the tensor product |ψ⟩⊗
|ϕ⟩ is the product of the i-th component of |ψ⟩ and the j-th
component of |ϕ⟩.
Example 3.10.

|0⟩ ⊗ |0⟩ =
(
1
0

)
⊗
(
1
0

)
=

1
0
0
0

|0⟩ ⊗ |1⟩ =
(
1
0

)
⊗
(
0
1

)
=

0
1
0
0

|1⟩ ⊗ |0⟩ =
(
0
1

)
⊗
(
1
0

)
=

0
0
1
0

|1⟩ ⊗ |1⟩ =
(
0
1

)
⊗
(
0
1

)
=

0
0
0
1

Note, that a 2-qubit system can exist in a superposition of 4
classical basis states, and an n-qubit system can exist in a su-
perposition of 2n classical basis states. Although it does not
hold 2n bits of information, its ability to exist in a superposi-
tion of states, combined with entanglement, is why a quantum
computer might potentially outperform classical computers.

Now, let us look at a 2-qubit state that troubled Einstein until
the end of his days, one of the Bell states:

|Φ+⟩ = 1√
2
|00⟩+ 1√

2
|11⟩ = 1√

2

1
0
0
1

Note that |00⟩ is |0⟩⊗ |0⟩. This state demonstrates a quantum
phenomenon known as entanglement. Intuitively, it means
that if a pair of qubits q0 and q1 are entangled, then they are
bound regardless of the distance between them, and one can-
not describe the state of q0 or q1 alone. This means that there
do not exist two states |ψ1⟩ and |ψ2⟩ in C2 such that

|Φ+⟩ = |ψ1⟩ ⊗ |ψ2⟩.

For |Φ+⟩, when we measure it, the two qubits are either both
|00⟩ or both |11⟩ since they are entangled (quantum measure-
ment is discussed later in detail).

The other three Bell states are:

|Φ−⟩ = 1√
2
(|00⟩ − |11⟩) ,

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩) ,

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩) .

For a linear operator to qualify as a quantum gate, it must be a
unitary operator. Moreover, for an n-qubit quantum system,
the quantum gates are 2n × 2n matrices. For example, we
have seen that 2-qubit quantum states are described by unit
vectors in C4. Accordingly, we can discuss 2-qubit quantum
gates, which are unitary operators (matrices) of dimension
4 × 4. There are two types of such gates: tensor products of
single-qubit gates and genuinely 2-qubit gates.

For a d1 × d1 matrix A and a d2 × d2 matrix B, the tensor
product A⊗B results in a d1d2 × d1d2 matrix.

Example 3.11. Let A =

(
a1 a2
a3 a4

)
and B =

(
b1 b2
b3 b4

)
.

The tensor product A⊗B is given by:

A⊗B =

(
a1B a2B
a3B a4B

)
=

a1b1 a1b2 a2b1 a2b2
a1b3 a1b4 a2b3 a2b4
a3b1 a3b2 a4b1 a4b2
a3b3 a3b4 a4b3 a4b4

 .

Example 3.12.

X ⊗ Z =

[
0 1
1 0

]
⊗
[
1 0
0 −1

]

=

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 ,

H ⊗H =
1√
2

[
1 1
1 −1

]
⊗ 1√

2

[
1 1
1 −1

]

=
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
Exercise 3.9. Compute X ⊗ I , Z ⊗H .

Solution:

X ⊗ I =

[
0 1
1 0

]
⊗
[
1 0
0 1

]

=

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

Z ⊗H =

[
1 0
0 −1

]
⊗ 1√

2

[
1 1
1 −1

]

=
1√
2

1 1 0 0
1 −1 0 0
0 0 −1 −1
0 0 −1 1

 .
Genuinely 2-qubit gates are not tensor products of single-
qubit gates. An important example of such a gate is the
controlled-NOT (CNOT) gate. The CNOT gate treats the first
qubit as the control qubit and the second as the target qubit.
It applies the PauliX gate (NOT gate) to the target qubit only
if the control qubit is |1⟩; otherwise, it does nothing. More
precisely:

The CNOT gate is represented by the matrix:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

[
I 0
0 X

]
,

The action of the CNOT gate on computational basis states is
as follows:

CNOT |00⟩ = |00⟩, CNOT |01⟩ = |01⟩,
CNOT |10⟩ = |11⟩, CNOT |11⟩ = |10⟩.

Now, we can do our first interesting computation: we can
prepare the Bell state |Φ+⟩ starting from an initial state of
two qubits |0⟩|0⟩ (or |0⟩ ⊗ |0⟩, denoted as |00⟩).

Example 3.13.

CNOT (H ⊗ I)|00⟩ = CNOT (H|0⟩ ⊗ I|0⟩)
= CNOT (|+⟩ ⊗ |0⟩)

= CNOT
(

1√
2
(|0⟩+ |1⟩)⊗ |0⟩

)
= CNOT

1√
2
(|00⟩+ |10⟩)

=
1√
2
(CNOT |00⟩+ CNOT |10⟩)

=
1√
2
(|00⟩+ |11⟩).

Thus, the resulting state is the Bell state:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩).

Exercise 3.10. Try using the initial states |01⟩, |10⟩, and |11⟩
with the same gates as in Exercise 3.13 to construct the other
Bell states.

Postulate 4: Measurement

The measurement of a quantum state involves three classes of
linear operators: Hermitian operators, positive semi-definite
operators, and orthogonal projection operators. Readers can
decide whether to cover these topics in their courses depend-
ing on the depth and audience of the course.

Without mentioning these operators, the measurement can be
simplified as follows:

For a single-qubit state α|0⟩+β|1⟩, the probability of measur-
ing the outcome |0⟩ is |α|2, and the probability of measuring
the outcome |1⟩ is |β|2. After the measurement, the state col-
lapses to the measured basis state, either |0⟩ or |1⟩.

For a two-qubit system in the state

|ψ⟩ = α|00⟩+ β|01⟩+ γ|10⟩+ δ|11⟩,

the probabilities of measuring the outcomes |00⟩, |01⟩, |10⟩,
and |11⟩ are |α|2, |β|2, |γ|2, and |δ|2, respectively. Upon
measurement, the state collapses to the measured basis state
corresponding to the outcome.

In general, for an n-qubit quantum system, the measurement
outcomes are determined by the probabilities associated with
the amplitudes of each computational basis state. These prob-
abilities always sum to 1, ensuring the state is properly nor-
malized.

4 Challenges and Solutions

With Sections 3.1 and 3.2, we have reduced the mathematics
and physics barriers for students to understand quantum com-
puting. Readers can proceed with the rest of their courses,

exploring desired quantum ”tricks” or algorithms. In this sec-
tion, we summarize some of the challenges students may face
when first learning quantum computing and offer potential
solutions.

Terminologies, Notations, and Meanings

The first challenge students might encounter is that quantum
computing, being a multidisciplinary topic, often uses multi-
ple names for the same concept. For example, for a complex
number c, |c| is referred to as the length, magnitude, or mod-
ulus. Additionally, many distinct concepts may have similar
names, such as dot product, inner product, outer product, and
tensor product.

In fact, we have observed that some materials on quan-
tum computing—and occasionally ChatGPT—claim that the
outer product and tensor product for vectors are the same,
which is incorrect. This can be very confusing for students.

To address this challenge, in Section 3, we provide distinct
names for the same content during its definition, ensuring
clarity. Furthermore, we include examples and exercises to
help students become more familiar with these concepts and
their differences.

Circuit Diagrams

Understanding the circuit diagrams of quantum operations
can be confusing for students, even though they are similar
to classical circuit diagrams. Here, we highlight some poten-
tially confusing aspects for students and provide a famous ex-
ample to clarify these concepts: quantum teleportation (first
demonstrated in [15]. In a quantum circuit diagram:

1. A single wire represents a single qubit state.
2. A single wire with no gate can be interpreted as applying

the identity matrix I to the single qubit state.
3. Multiple single wires represent the tensor product of in-

dividual single-qubit states.
4. A double wire following a measurement indicates that

the output of the measurement is a classical bit string.

What is quantum teleportation? Suppose there is a single-
qubit system given by:

|ψ⟩ = α|0⟩+ β|1⟩

where the values of α and β are unknown. How can this state
be transmitted to a friend?

Quantum teleportation utilizes an entangled Bell state, specif-
ically:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

This state consists of two entangled qubits. Suppose the first
qubit is held by you, and the second by your friend. Using the
following quantum circuit, the state |ψ⟩ can be ‘teleported’
from you to your friend.

Figure 1: Quantum teleportation circuit diagram.

This means we initially start with the state:

|ψ⟩ ⊗ |Φ+⟩

where |ψ⟩ is the state we want to teleport, and |Φ+⟩ is a Bell
state. Explicitly, this can be written as:

|ψ⟩ ⊗ |Φ+⟩ = (α|0⟩+ β|1⟩)⊗ 1√
2
(|00⟩+ |11⟩)

=
1√
2

(
α|000⟩+ α|011⟩+ β|100⟩+ β|111⟩

)
We first apply the CNOT gate on the first qubits, and get

1√
2

(
α|000⟩+ α|011⟩+ β|110⟩+ β|101⟩

)
Then, the H gate is applied on the first qubit. So after applying
the H gate, we have

1√
2

(
α|+⟩ ⊗ |00⟩+ α|+⟩ ⊗ |11⟩

+ β|−⟩ ⊗ |10⟩+ β|−⟩ ⊗ |01⟩
)

=
1

2

(
α(|0⟩+ |1⟩)⊗ |00⟩+ α(|0⟩+ |1⟩)⊗ |11⟩

+ β(|0⟩ − |1⟩)⊗ |10⟩+ β(|0⟩ − |1⟩)⊗ |01⟩
)

=
1

2

(
|00⟩(α|0⟩+ β|1⟩) + |01⟩(α|1⟩+ β|0⟩)

+ |10⟩(α|0⟩ − β|1⟩) + |11⟩(α|1⟩ − β|0⟩)
)

This shows that the resulting 3-qubit state has 4 components,
and when measured, each component has a probability of

(12)
2 = 25% of being observed. The remarkable part is that

the measurement of the first two qubits (held by you) deter-
mines the state of the third qubit (held by your friend).

If the first two qubits are measured as |00⟩, then the third qubit
held by your friend must be |ψ⟩, completing the teleportation.

For other possible measurements:

1. If the first two qubits are measured as |01⟩, your friend
can apply an X gate to their qubit:

X(α|1⟩+ β|0⟩) = |ψ⟩

2. If the first two qubits are measured as |10⟩, your friend
can apply a Z gate:

Z(α|0⟩ − β|1⟩) = |ψ⟩

3. If the first two qubits are measured as |11⟩, your friend
can apply ZX gates:

ZX(α|1⟩ − β|0⟩) = |ψ⟩

Thus, based on your measurement, your friend can always
reconstruct the quantum state |ψ⟩ instantaneously, regardless
of the distance between you and your friend. However, this
does not imply that information can be transmitted faster than
the speed of light, as the result of your measurement must still
be communicated to your friend through a classical channel.

Algebraic Rules

The final challenge addressed in this paper is the unfamiliar-
ity with many algebraic rules used in quantum computing for
students. As a result, even simple computations can cause
hesitation.

To address this, we summarize some fundamental algebraic
rules in quantum computing and demonstrate their simplicity
and utility through a proof of the famous no-cloning theorem.

Let A, B, C, D be matrices and |a⟩, |b⟩, |c⟩, |d⟩ be vectors.

(AB)† = B†A† (1)

(AB)T = BTAT (2)
⟨(α|0⟩+ β|1⟩)| = α∗⟨0|+ β∗⟨1| (3)
(|a⟩+ |b⟩)⊗ |c⟩ = |a⟩ ⊗ |c⟩+ |b⟩ ⊗ |c⟩ (4)
|a⟩ ⊗ (|b⟩+ |c⟩) = |a⟩ ⊗ |b⟩+ |a⟩ ⊗ |c⟩ (5)

α(|a⟩ ⊗ |b⟩) = (α|a⟩)⊗ |b⟩ = |a⟩ ⊗ (α|b⟩) (6)

(|a⟩ ⊗ |b⟩)† = |a⟩† ⊗ |b⟩† = ⟨a| ⊗ ⟨b| (7)
(⟨a| ⊗ ⟨c|)(|b⟩ ⊗ |d⟩) = ⟨a|b⟩⟨c|d⟩ (8)

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (9)
Tr(A⊗B) = Tr(A) Tr(B) (10)

where Tr represents the trace of a matrix.

Example 4.1.

|1⟩ ⊗ |−⟩ = |1⟩ ⊗
(

1√
2
|0⟩ − 1√

2
|1⟩
)

=
1√
2
|1⟩ ⊗ |0⟩ − 1√

2
|1⟩ ⊗ |1⟩

=
1√
2

0
0
1
0

− 1√
2

0
0
0
1

=
1√
2

 0
0
0
−1

 .

With these rules at hand, let us prove the no-cloning theorem
for quantum states.
Theorem 4.1. [16] Given an arbitrary quantum state |ψ⟩ ∈
C2, there is no quantum circuit capable of creating an exact
copy of |ψ⟩.

Proof: Suppose there exists a unitary operator U of dimen-
sion 2× 2 such that for any quantum state |ψ⟩ ∈ C2, U maps
|ψ⟩ ⊗ |0⟩ to |ψ⟩ ⊗ |ψ⟩, i.e., U creates a copy of |ψ⟩.

Then, for two arbitrary states |ψ1⟩, |ψ2⟩ in C2, we have:
|ϕ⟩ = U(|ψ1⟩ ⊗ |0⟩) = |ψ1⟩ ⊗ |ψ1⟩
|ϕ′⟩ = U(|ψ2⟩ ⊗ |0⟩) = |ψ2⟩ ⊗ |ψ2⟩

Now, consider the inner product ⟨ϕ|ϕ′⟩:
⟨ϕ|ϕ′⟩ = (|ϕ⟩)†|ϕ′⟩

= (U(|ψ1⟩ ⊗ |0⟩))† U(|ψ2⟩ ⊗ |0⟩)
= (|ψ1⟩ ⊗ |0⟩)†U†U(|ψ2⟩ ⊗ |0⟩)
= (⟨ψ1| ⊗ ⟨0|)(|ψ2⟩ ⊗ |0⟩)
= ⟨ψ1|ψ2⟩⟨0|0⟩
= ⟨ψ1|ψ2⟩

Also,
⟨ϕ|ϕ′⟩ = (|ψ1⟩ ⊗ |ψ1⟩)†(|ψ2⟩ ⊗ |ψ2⟩)

= (⟨ψ1| ⊗ ⟨ψ1|)(|ψ2⟩ ⊗ |ψ2⟩)
= ⟨ψ1|ψ2⟩⟨ψ1|ψ2⟩
= ⟨ψ1|ψ2⟩2.

This implies ⟨ψ1|ψ2⟩ = ⟨ψ1|ψ2⟩2. Hence, ⟨ψ1|ψ2⟩ is either
0 or 1.

Therefore, |ψ1⟩ and |ψ2⟩ are either orthogonal or in the same
direction. This leads to a contradiction.

5 Evaluation and Conclusion

In this paper, we introduced an approach to teaching intro-
ductory quantum computing from a computer science per-

spective, aiming to lower the mathematical and physical bar-
riers for students. In Section 3, we summarized nine key con-
cepts in linear algebra and reformulated the four postulates of
quantum mechanics using linear algebra, making the mate-
rial more accessible for computer science students. While the
course has not yet been offered, and its evaluation and analy-
sis remain as future work, the framework presented here pro-
vides a practical and adaptable starting point. We hope that
educators can use this approach to initiate their own efforts in
quantum computing education, fostering broader accessibil-
ity and interest in this emerging field.

References

[1] M. A. Nielsen, I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cam-
bridge University Press, 2010).

[2] S. Seegerer, T. Michaeli, R. Romeike, Quantum com-
puting as a topic in computer science education, in Pro-
ceedings of the 16th Workshop in Primary and Sec-
ondary Computing Education, pages 1–6 (2021).

[3] M. Kaur, A. Venegas-Gomez, Defining the quantum
workforce landscape: a review of global quantum ed-
ucation initiatives, Optical Engineering, 61(8):(2022),
081806–081806.

[4] Ö. Salehi, Z. Seskir, I. Tepe, A computer science-
oriented approach to introduce quantum computing
to a new audience, IEEE Transactions on Education,
65(1):(2021), 1–8.

[5] S. Goorney, J. Bley, S. Heusler, J. Sherson, A frame-
work for curriculum transformation in quantum infor-
mation science and technology education, European
Journal of Physics, 45(6):(2024), 065702.

[6] S.-Y. Hou, G. Feng, Z. Wu, H. Zou, W. Shi, J. Zeng,
C. Cao, S. Yu, Z. Sheng, X. Rao, et al., Spinq gemini: a
desktop quantum computing platform for education and
research, EPJ Quantum Technology, 8(1):(2021), 1–23.

[7] J. D. Weisz, M. Ashoori, Z. Ashktorab, Entanglion: A
board game for teaching the principles of quantum com-
puting, in Proceedings of the 2018 Annual Symposium
on Computer-Human Interaction in Play, pages 523–
534 (2018).

[8] D. Escanez-Exposito, J. Correa-Marichal, P. Caballero-
Gil, Using game-based learning and quantum comput-
ing to enhance steam competencies in k-16 education,
IEEE Transactions on Education.

[9] J. C. Meyer, G. Passante, S. J. Pollock, B. R. Wilcox,
Today’s interdisciplinary quantum information class-
room: Themes from a survey of quantum information
science instructors, Physical Review Physics Education
Research, 18(1):(2022), 010150.

[10] J. C. Meyer, G. Passante, B. Wilcox, Disparities in
access to us quantum information education, Physi-
cal Review Physics Education Research, 20(1):(2024),
010131.

[11] K. Svozil, Quantum logic (Springer Science & Business
Media, 1998).

[12] J. Xie, H. B. Hunt, III, On the undecidability and de-
scriptional complexity of synchronized regular expres-
sions, Acta Informatica, 60(3):(2023), 257–278, ISSN
0001-5903, doi:10.1007/s00236-023-00439-3.

[13] J. Xie, H. B. Hunt, R. E. Stearns, On the compu-
tational and descriptional complexity of multi-pattern
languages, Theoretical Computer Science, 1030:(2025),
115063, ISSN 0304-3975, doi:https://doi.org/10.1016/j.
tcs.2025.115063.

[14] J. Xie, H. B. Hunt III, R. E. Stearns, Pumping lem-
mas can be “harmful”, Theory of Computing Sys-
tems, 68:(2024), 1339–1352, doi:https://doi.org/10.
1007/s00224-024-10169-9.

[15] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa,
A. Peres, W. K. Wootters, Teleporting an unknown
quantum state via dual classical and einstein-podolsky-
rosen channels, Physical review letters, 70(13):(1993),
1895.

[16] W. K. Wootters, W. H. Zurek, A single quantum cannot
be cloned, Nature, 299(5886):(1982), 802–803.

Effective Approaches for Teaching Introductory Programming Without Coding Assignments

Jongwook Kim
West Chester University of Pennsylvania

jkim2@wcupa.edu

ABSTRACT
There is a noticeable gap between students’ actual program-
ming abilities and their evaluation results in introductory
programming courses. Despite well-designed assignments,
many students fail to develop essential programming skills
because they rely on external help rather than writing code
independently. We observed this discrepancy in prerequisite
exams for 400-level courses, where senior students are asked
to solve programming problems from earlier course assign-
ments. To address this issue, we removed programming as-
signments from the grading criteria and introduced in-class
programming quizzes, where students write code by hand un-
der the supervision of instructors. This approach aims to en-
sure independent problem-solving and provide a more accu-
rate assessment of students’ coding capabilities. In this pa-
per, we discuss our experience with the no-assignment ap-
proach, its impact on student learning, and how it leads to a
more accurate reflection of their programming abilities, ulti-
mately preparing them more effectively for advanced courses
and real-world programming challenges.

1 Introduction

With years of experience teaching introductory programming
courses in computer science, we (instructors) learned that
even well-designed programming assignments, which require
significant effort from instructors to create and grade, may
not be as effective as intended. Despite the complexity and
thoughtfulness put into these assignments, many students can
progress to upper-level courses without acquiring the essen-
tial programming skills they should have gained, as they of-
ten do not write the code on their own. This creates a clear
gap between students’ programming abilities and the evalu-
ation results from introductory programming courses. Over
the years, this discrepancy became apparent in the results of
prerequisite exams in our 400-level classes, where senior stu-
dents’ programming skills do not align with the letter grades
they achieved in introductory programming courses, raising
concerns about whether the assignments truly assess or im-
prove students’ programming skills.

To address this issue, several years ago, we removed pro-
gramming assignments from our grading criteria entirely. In-
stead, we began giving students programming quizzes during

each class, where they were required to write code by hand in
front of us. This shift aims to achieve several goals: ensuring
students write programs independently and allowing us to di-
rectly assess their coding abilities in real time. However, this
change also required us to develop new logistics and struc-
tures for the course to make the approach feasible. In this pa-
per, we discuss our own approaches for teaching introductory
programming courses and their effectiveness in the context of
emerging technologies like Large Language Models (LLMs),
which are influencing how we teach programming today.

2 Background

Programming is a fundamental skill for students pursuing
a degree in computer science, and it is hard to imagine a
computer science education without it. However, through
years of observation at colleges, we noticed a troubling trend:
many computer science students lack confidence in their
programming abilities, and as a result, they tend to avoid
programming-intensive courses when possible. This issue of
low confidence led us to explore different teaching methods
in an attempt to discover the most effective way to teach pro-
gramming.

In our early approach, we assigned students a challenging
programming assignment each week, with the expectation
that these assignments take the entire week to complete. Our
goal was for students to invest enough time to deeply un-
derstand the course material while working independently on
these difficult assignments. However, this expectation proved
to be incorrect. Many students submitted incomplete assign-
ments or cheated. We found numerous copies of our assign-
ments available on online tutoring services like Chegg [1],
where students pay a monthly subscription fee of $15 to ac-
cess tutor-provided solutions. In more recent years, students
have increasingly relied on LLMs like ChatGPT [2] to gener-
ate solutions for their programming assignments. This means
that, technically, computer science freshmen can move on to
upper-level courses without ever writing non-trivial programs
independently, unless required to do so on exams, which is
uncommon.

Through these experiences, we realized that traditional pro-
gramming assignments often fail to achieve their intended

learning outcomes. Students can easily circumvent the chal-
lenges of these assignments by hiring freelance programmers
or utilizing tutoring services, creating an unfair advantage
over those who struggled to complete assignments on their
own. While it is possible to use plagiarism detection software
to check for copied code, such tools are limited in their ability
to identify all forms of cheating. For example, it remains dif-
ficult to detect when students submit code written by a sibling
or someone else. Code similarity alone cannot definitively
prove academic dishonesty, especially when administrators
(i.e., non computer science faculty) in charge of reviewing
cases lack a technical background (e.g., renaming variables
makes a program appear completely different to them.)

As a result, we decided to stop assigning programming as-
signments in our class. Instead, we implemented a new ap-
proach in which students take programming quizzes during
each class session, requiring them to write code under our di-
rect supervision. This method ensures that students cannot
cheat, as they must write the program independently in class
within a set time limit. Over the past few years, we have re-
fined this approach in our introductory programming courses.
Interestingly, freshmen in these courses outperformed senior
students, solving more problems on average in a department-
wide programming contest.

3 Grading Criteria

To address the limitations associated with assignment-based
assessments, we adopted a grading scheme that placed 90%
of the overall grade on in-class exams and quizzes. This ap-
proach ensures a more direct and consistent assessment of
students’ programming abilities, while also addressing con-
cerns related to cheating and reliance on external help. The
grading breakdown is structured as follows:

• Quizzes – Each class session includes a programming
quiz that makes up 40% of the final grade. These quizzes
are designed to evaluate students’ fundamental under-
standing of the relevant concepts and their ability to ap-
ply them in real-time problem-solving scenarios, which
require logical thinking and coding within a limited
time.

• Midterm exam – The midterm exam (20%) provides an
additional opportunity to evaluate students’ understand-
ing of the material covered up to that point in the course,
along with their programming skills under exam con-
ditions. The midterm consists solely of programming
questions that require students to write more complex
code.

• Final exam – The final exam (30%), like the midterm, is
comprehensive and aims to assess the cumulative knowl-
edge and skills students acquired during the semester.

• Participation – Students are required to follow several
class policies, with violations leading to a deduction
of up to 10% from their final score. Below are some

of these policies to maintain focus and attention during
class:

– Stay for the entire duration of the class
– Do not use electronic devices
– Do not eat during class
– Do not engage in private conversations

• Typing test – Students are required to pass a typing
test [3] by achieving 100% accuracy within 90 seconds
by the end of the semester. Failure to do so results in the
student being ineligible to receive a final letter grade, re-
gardless of their performance in other evaluations (e.g.,
exams and quizzes).

This grading scheme is designed to prioritize in-class assess-
ments, providing a more consistent and reliable measure of
students’ programming abilities. By eliminating assignment-
based grading, students are unable to seek external help or use
AI-assisted tools—such as peer assistance or code-generating
programs—that compromises the fairness of the assessment.

This approach not only helps maintain academic integrity but
also encourages students to take ownership of their learning
process and improve their coding skills through practice and
self-reliance. Learning programming is comparable to solv-
ing math problems in that when students receive help from
others, they lose the opportunity to solve the problem on
their own and become more reliant on external assistance,
which can greatly hinder their problem-solving abilities. In
the worst case, this dependency during the early stages of
learning programming deprives students of the chance to ever
fully learn programming. It is crucial that students attempt to
write the code and solve the problems independently.

4 Course Structure and Resources

To make the exam-only (or assignment-free) course effective,
we revised the way students engage with course materials and
prepare for quizzes and exams. Here are some of the key
approaches we implemented:

4.1 Printed Textbook

Although digital course materials are widely used today, we
require students to purchase a printed (rather than digital)
textbook for our programming courses. This decision is
based on several key reasons, all aimed at improving students’
learning experiences and promoting long-term academic suc-
cess. Mangen et al. [4] found that students who read printed
textbooks performed better on reading comprehension tests
than those who read digital versions. Many educators still
prefer printed textbooks when deep learning and focus are
needed. Freshmen, in particular, need to develop good study
habits, and reading the textbook is a key part of their self-
driven learning process, as they will be required to consult
textbooks more deeply in the upcoming academic years.

At the beginning of the semester, we emphasize the impor-
tance of reading the textbook, advising students to read each
chapter at least three times. We make it clear that our lectures
do not cover every detail and that the textbook is the most
comprehensive resource for learning. To prepare for quizzes,
students also need a textbook with exercises similar to quiz
questions (more details in Sections 4.2 and 4.3). We suggest
students purchase affordable used textbooks, which are avail-
able for $10 to $30 on platforms like eBay or Amazon.

4.2 Exercise Problems in the Textbook

Students are expected to master all the exercise problems in
each chapter to succeed in the course. This is a time-intensive
task, requiring students to dedicate at least three hours1 per
day to practicing coding. Since quiz questions are directly
based on these exercises, completing them helps students bet-
ter prepare for the quizzes. The clear link between textbook
exercises and quiz content creates a focused and intentional
learning path, ensuring that students are well-prepared for as-
sessments and build their skills over time.

Below are an example exercise problem and the related quiz
question:

Write a Java program that generates the following
output. Use for-loop(s) to eliminate code redundancy.
You must declare and use a variable in the for-loop
header, set its initial value to 1, and increment it by 1
after each iteration.

For the same question above, students write a program that
produces the exercise output (left) shown below for practice.
During the quiz, they are asked to generate a more complex
output (right):

Exercise Output Quiz Output
....1 9999999997777777555553331
...2. 88888888666666444422
..3.. 7777777555553333
.4... 6666664444
5.... 55555

By solving the exercises, students bridge the gap between
theoretical knowledge and practical application. The more
they practice, the more they refine their coding skills, which
is the only path for most students to becoming proficient
in programming. Through consistent practice, students also
develop good programming habits necessary for success in
programming-intensive courses and real-world programming
tasks. In short, solving the exercises helps students gain con-

1For students planning to pursue internship or full-time program-
mer positions within the next year or few years, spending three hours
a day coding is not excessive, even with their other coursework. The
programming skills acquired in this course are crucial for their fu-
ture careers, making the additional effort a worthwhile investment.

fidence in their coding skills, succeed in the course, and ulti-
mately prepare for their future career.

4.3 In-class Programming Quizzes

In each class session, students are given two quiz questions,
each worth 15 points, with a 20-minute time limit. Since stu-
dents are expected to have already practiced the exercises in
the textbook, this time constraint is considered appropriate,
making the in-class assessment less intimidating while still
providing a meaningful challenge. Unlike typical program-
ming assignments, students are encouraged to collaborate and
discuss exercise solutions with their peers, which helps them
explore different approaches and deepens their understanding
of the concepts.

Writing code by hand, without the use of machines, is an ef-
fective method for improving students’ programming abili-
ties, especially for beginners. It requires students to slow
down and engage in deeper, more deliberate thought pro-
cesses. This approach encourages students to thoughtfully
examine each line of code they write, helping them to inter-
nalize the meaning of every word (i.e., lexeme). Unlike typ-
ing code in an Integrated Development Environment (IDE),
where syntax errors are immediately flagged, handwritten
coding demands a deeper understanding of both syntax and
logic.

To ensure that students follow best coding practices, the
grading criteria must be strict. Even minor mistakes, such
as inconsistent indentation, poor variable naming, redundant
code, or unreadable code, result in point deductions. We
learned from experience that senior students struggle to break
long-held bad programming habits because they did not lose
(many) points for these habits when they first started learn-
ing programming as freshmen. For example, a student in our
class loses 4 points (26%) due to incorrect indentation in an
executable Java program below:

public class Welcome {
public static void main(String[] args)

{
System.out.println("Welcome to Java!"); }

}

These grading policies reinforce the idea that programming is
not solely about producing the correct output but also about
writing clean, maintainable code. This emphasis encourages
students to pay attention to code hygiene such as formatting,
naming conventions, and code-level efficiency, while also
considering how other programmers will interact with their
code in a professional setting. To keep students motivated,
they are offered a make-up quiz that replaces the lowest score
from the last three quizzes.

4.4 Unofficial Programming Assignments

The quizzes focus on short coding tasks, which, by nature,
cannot require students to write hundreds of lines of code
within a 20-minute time. To help students develop their abil-
ity to write more complex programs, we assign unofficial
programming assignments that challenge them to solve intri-
cate problems, requiring advanced critical thinking, problem-
solving, and logical reasoning.

These assignments are not included in the course assessment
and are intended to give students the opportunity to explore
programming in more depth without the pressure of final
grades. This approach is also intentional to discourage stu-
dents from submitting code they copied from other sources.
Since the assignments do not affect the final grade, there is no
immediate incentive to cheat.

The programming assignments are introduced after the course
withdrawal deadline (and midterm exam). Only students who
are qualified to complete the course and have the required
knowledge and skills (such as loops, branches, interactive
programming, etc.) are given these challenging tasks. To
further support student growth, we provide detailed feedback
on these assignments, which help them improve their coding
abilities in a meaningful way.

5 Challenges and Adjustments

5.1 Low Pass Rate

The course is designed to pass students who are truly capable
of writing code and understanding a programming language,
which makes it challenging for those who do not follow our
guidance, such as reading the textbook multiple times and
completing all the exercises. Over the last three semesters, the
course enrolled 62 students, with an average pass rate of 37%,
and 52% of students dropping out before the midterm. While
this high dropout rate is not ideal, it reflects the course’s de-
manding nature and the high standards it maintains. Addi-
tionally, there was an 11% failure rate after the midterm.

The low pass rate aligns with broader trends observed in
similar courses at other colleges [5; 6], where introductory
programming courses often experience withdrawal or failure
rates in the range of 30–50%. Despite this, the decision to
maintain a rigorous grading structure is intentional. We be-
lieve that it is more important to uphold high standards and
rigor to better prepare students for the challenges they will
face in advanced programming courses or real-world techni-
cal roles, even if this results in fewer students passing the
course.

Maintaining high standards has been an ongoing debate in
academia, especially in non-top-tier colleges, particularly in
courses that act as gateways to technical disciplines. While
some argue that high attrition rates reflect a lack of acces-

sibility or support for students, we believe it is important to
consider both the challenges students face and the long-term
benefits of a high bar for success in introductory program-
ming courses. This approach helps graduate quality students
and preserves the reputation of the academic program.

5.2 Manual Grading and Verbal Feedback

Grading quizzes and exams by hand is a laborious task for
instructors, especially in large classes at public universities.
However, manually grading code provides significant bene-
fits for beginner programmers, who need detailed and per-
sonalized feedback to improve. Beyond fixing compile- or
run-time errors, these students need to learn how to refine
their current algorithms (i.e., rewrite the code in a more effi-
cient way). While manual grading is overwhelming in large
classes, it becomes more manageable as class sizes typi-
cally decrease after the midterm in gatekeeping courses. Al-
though not intentional, with fewer students, instructors can
provide more in-depth feedback while also reducing the grad-
ing workload.

We recommend using office hours to provide verbal feedback
on quizzes and exams. This gives students a direct and more
efficient opportunity to ask questions, clarify any misunder-
standings, and receive personalized guidance on improving
their coding skills. Additionally, it helps freshmen develop
good learning habits by emphasizing that office hours are a
valuable resource for efficient learning.

Office hours also give instructors the opportunity to track
each student’s progress over time. This ongoing interaction
enables instructors to identify patterns in common mistakes
and adjust their teaching strategies to address recurring chal-
lenges, benefiting the entire class. Since this process is time-
consuming and labor-intensive for instructors, department-
wide support, such as teaching assistants, should be provided.

6 Discussion

As evidence of the effectiveness of the exam-only intro-
ductory programming course, freshmen who enrolled in the
course we developed solved more problems than seniors who
did not take our course in a department-wide programming
competition [7], which included a total of 36 computer sci-
ence students. The five freshmen averaged 2.25 problems2

solved per competitor, while the ten seniors averaged 2.07
problems. Although the small number of participants means
these results may not fully represent the broader group of
freshmen and senior students, the findings are still notewor-
thy, as most participants are motivated and have good pro-
gramming skills.

2The problems do not require advanced knowledge of data struc-
tures and algorithms and can be solved by anyone with basic pro-
gramming skills.

Out of 23 students who completed the course and received a
final letter grade (including F) during the 2023-24 academic
year, the course received high ratings (91%) from students.
However, we are cautious about placing too much weight on
their evaluations at this stage. First, the evaluations from stu-
dents who dropped the course before the midterm are not in-
cluded. Second, as freshmen, the students do not yet have the
perspective to fully understand the long-term benefits of a rig-
orous, hands-on programming education. Since our focus is
on their long-term learning outcomes rather than immediate
satisfaction, we believe their feedback will be more meaning-
ful in two years or after graduation, when they are better able
to appreciate the full value of our approach. Third, regard-
less of students’ evaluations, we, as instructors, sometimes
need to maintain teaching methods that may not be favored by
many students. For example, although most students dislike
the quizzes in each class, if this approach effectively encour-
ages daily coding practice, we should persist in continuing
it.

7 Related Work

Krusche and Berrezueta-Guzman [8] presented an interactive
learning methodology aimed at improving programming ed-
ucation for first-year computer science students. Their ap-
proach combines real-time feedback, communication plat-
forms, and automated assessments to support continuous
learning and enhance student outcomes. Also, it includes in-
class activities, group tutorials, and independent homework
assignments to strengthen coding proficiency and problem-
solving abilities.

Robinson and Carroll [9] proposed an open-source online
learning platform to improve the teaching and assessment
of programming in large classes. Their approach utilizes
modern web technologies and automated assessment tools to
provide real-time feedback, personalized instructor guidance,
and a development environment that mimics real-world pro-
gramming. The platform supports both formative and sum-
mative assessments, promoting self-paced learning, enhanc-
ing feedback, and reducing administrative workload for in-
structors.

Vihavainen et al. [10] conducted a systematic review of teach-
ing interventions designed to enhance pass rates in introduc-
tory programming courses. The review analyzed 60 pre- and
post-intervention pass rates from 13 different teaching meth-
ods, revealing that, on average, interventions boosted pass
rates by nearly one third compared to traditional lecture-lab
approaches. Although no statistically significant differences
were observed between the various methods, courses that in-
cluded relatable content and collaborative elements, such as
pair programming, achieved the best outcomes. The study
emphasizes that while no single teaching approach stands out
as the best, intentional changes typically lead to improved
pass rates.

8 Conclusion

The exam-only approach we developed over the years repre-
sents a shift away from traditional programming assignments
towards a more hands-on, real-time method that emphasizes
skill development through continuous practice and direct su-
pervision. By abandoning traditional assignments prone to
cheating and reliance on external help, and instead focusing
on in-class coding exams, students are encouraged to engage
more deeply with the course materials in order to succeed,
thereby building their confidence and ability to write code un-
der pressure. The positive outcomes observed in our students,
including their stronger performance in a department-wide
programming contest, suggest that we are on the right track in
fostering a deeper understanding of programming and helping
students develop the confidence necessary to succeed in more
challenging programming-intensive courses. Ultimately, this
experience underscores the importance of adapting teaching
methods to address the challenges posed by modern educa-
tional tools, ensuring that students are not only learning but
also truly mastering the skills required in the field of com-
puter science.

References

[1] Chegg, https://www.chatgpt.com.
[2] chatGPT, https://www.chegg.com.
[3] Typing Club, https://www.typingclub.com/sportal/
program-3/8832.play.
[4] A. Mangen, B. R. Walgermo, K. Brønnick, Reading lin-
ear texts on paper versus computer screen: Effects on read-
ing comprehension, International Journal of Educational Re-
search, 58:(2013), 61–68.
[5] J. Bennedsen, M. E. Caspersen, Failure rates in intro-
ductory programming, SIGCSE Bull., 39(2):(2007), 32–36.
[6] J. Bennedsen, M. E. Caspersen, Failure rates in in-
troductory programming: 12 years later, ACM Inroads,
10(2):(2019), 30–36.
[7] West Chester University Programming Competition,
https://sites.google.com/view/wcpc.
[8] S. Krusche, J. Berrezueta-Guzman, Introduction to Pro-
gramming using Interactive Learning, in 2023 IEEE 35th In-
ternational Conference on Software Engineering Education
and Training, pages 178–182 (2023).
[9] P. E. Robinson, J. Carroll, An online learning platform
for teaching, learning, and assessment of programming, in
2017 IEEE Global Engineering Education Conference, pages
547–556 (2017).
[10] A. Vihavainen, J. Airaksinen, C. Watson, A systematic
review of approaches for teaching introductory programming
and their influence on success, in Proceedings of the Tenth
Annual Conference on International Computing Education
Research, page 19–26 (2014).

https://www.chatgpt.com
https://www.chegg.com
https://www.typingclub.com/sportal/program-3/8832.play
https://www.typingclub.com/sportal/program-3/8832.play
https://sites.google.com/view/wcpc

INTEGRATING AI INTO CS/IS EDUCATION: PRACTICAL APPLICATIONS AND ABET
COMPLIANCE

Pratibha Menon
Pennsylvania Western University

menon@pennwest.edu

ABSTRACT
Artificial Intelligence (AI) transforms computing
education by providing students with creative tools that
make learning more engaging and effective. This study
investigates how the use of AI tools in Computer Science
(CS) and Information Systems (IS) programs aligns with
the standards set by ABET accreditation. A systematic
literature review (SLR) identifies key AI-driven
technologies, including coding assistants, intelligent
tutoring systems, automated assessment, and academic-
industry collaborations. The analysis highlights AI's role
in personalized learning, scalable assessments, and
curriculum alignment with industry needs while mapping
these innovations to ABET criteria. The study emphasizes
responsible implementation and recommends curriculum
updates, faculty training, and stakeholder collaboration. It
guides educators and program developers on leveraging
AI for enriched student learning and outlines future
research directions for sustainable AI-driven curriculum
innovation.

KEY WORDS
AI, CS, IS, ABET, Curriculum

1. Introduction

Advancements in AI technologies are redefining the
competencies needed for CS and IS graduates [1][2]. As
AI-driven roles and workflows become more prevalent,
integrating AI into education has become imperative
[3][4]. Artificial intelligence tools provide features like
personalized learning, automatic code creation, and
feedback based on data analysis, addressing ongoing
issues in CS and IS education [5]. For example, large
class sizes and diverse student backgrounds make
personalized instruction difficult. Still, AI-driven tutoring
systems are capable of offering customized assistance to a
large number of students simultaneously. Likewise,
grading programming assignments is time-intensive;
Automated feedback systems powered by AI enable
educators to focus more on in-depth mentoring by
handling routine evaluations. AI's can significantly
enhance learning outcomes—a recent meta-analysis
reported a substantial positive effect size of 1.36 for AI
interventions in CS education [5].

However, educators looking to incorporate AI into
curricula must ensure that AI assistants, such as code
generators like GitHub Copilot, do not compromise
foundational learning or academic integrity [6][7][8].
Clear strategies are needed to integrate AI in ways that
support effective pedagogy. Additionally, in accredited
CS and IS programs, curriculum changes are guided by
standards like ABET’s criteria, which require programs to
achieve specific student outcomes and undergo
continuous improvement based on assessment [9]. ABET
expects graduates to develop competencies in areas such
as problem analysis, solution design, ethics, teamwork,
and the application of modern tools. The current list of
ABET student outcomes and criteria that are common to
both CS and IS programs and criteria are listed in
Appendix A.

Furthermore, programs must involve key stakeholders,
such as industry advisors, in curriculum updates and
ensure students can access necessary computing
resources. As a result, integrating AI-based tools must
enhance, and not hinder, the achievement of learning
outcomes and be supported by rigorous evaluation.
Aligning AI adoption with ABET standards is critical for
two reasons: it upholds educational quality by providing a
well-structured framework to assess the impact of AI
interventions on student learning.

Given these opportunities and constraints, this research
explores how CS and IS education can effectively
incorporate AI while adhering to accreditation standards.
A key gap in existing research is the lack of
comprehensive guidance on integrating AI educational
tools within formal curricula; while previous studies have
examined individual AI applications, few have analyzed
their systematic implementation in accredited programs.
To address this gap, the study investigates the following
research questions:

1. RQ1: What are the primary practical
applications of AI in CS and IS education based
on recent literature?

2. RQ2: How do these AI applications enhance
teaching and learning outcomes in computing
courses, and what challenges arise in their
implementation?

3. RQ3: How can AI-driven tools be integrated
into curricula while ensuring compliance with
ABET accreditation criteria and student learning
outcomes?

This paper makes a unique contribution by addressing
these research questions: it synthesizes AI-driven
educational innovations and aligns them with
accreditation requirements. Findings from various studies
are analyzed to inform actionable approaches for
curriculum design that can enable educators to utilize AI's
benefits, such as personalized learning, enhanced
efficiency, and industry relevance while maintaining
accreditation standards. The subsequent sections present a
review of related work, the literature review methodology
details, an analysis of AI application areas, and
recommendations for integrating these innovations within
ABET-aligned curricula.

2. Existing Research on AI in CS/IS
Education

For many years, researchers have explored AI's role in
education, resulting in the creation of intelligent tutoring
systems, automated assessment tools, and adaptive
learning environments [10][11]. Within CS education,
intelligent tutoring systems (ITSs) have been extensively
studied for their ability to provide personalized, real-time
feedback in programming courses [12]. Research shows
that adapting to real-world student mistakes helps AI
tutors improve understanding and academic outcomes.
Early examples, such as the Python Tutor, and more
advanced AI-based tutors now use machine learning
algorithms to guide students through coding exercises,
offering hints and correcting misconceptions [12][13].

In IS and related fields, education often involves decision-
making, data analysis, and the use of information
technology in organizational contexts. AI tools that aid
decision support or predictive analytics can be embedded
into IS coursework to enrich these topics. For example, an
AI tool could be embedded in a data mining or business
analytics course to help students analyze datasets or
visualize patterns. Even though research explicitly
focusing on AI in undergraduate IS curricula is less
abundant than in CS, parallels can be drawn from case
studies. For example, in an exploratory study in a
database administration course, which is a subject
bridging CS and IS, students were encouraged to use
ChatGPT as a support tool [15].

Prior studies have explored automated assessment of
programming assignments. Various tools and
techniques—such as unit testing frameworks, code
stylometry, and static analyzers—have been designed to
automatically evaluate student code and provide
immediate feedback [16]. A systematic review
categorized 121 automated grading tools, highlighting

that most offer near-instant feedback and allow multiple
submission attempts, which enhances student satisfaction
and reinforces learning through iterative improvement
[16].

Beyond tutoring and grading, AI has been applied in
learning analytics to detect students who may be at risk by
analyzing educational data, adaptive content delivery, and
virtual teaching assistants that respond to routine student
inquiries in discussion forums [17][18]. All these
advancements demonstrate AI's potential to improve
engagement and learning outcomes in CS/IS education.

While AI-driven tools like tutors and automated graders
have proven effective, comprehensive research is lacking
on their systematic integration into the curricula of
accredited programs. Existing studies often focus on the
benefits of AI tools within individual courses or specific
learning contexts but do not address broader pedagogical
and administrative challenges. A structured approach is
essential for embedding AI tools across various courses in
a CS/IS program, ensuring alignment with learning
objectives and accreditation standards. This paper
addresses this gap by connecting micro-level findings
from prior research (e.g., performance improvements
from AI tutors in a programming course) with macro-
level considerations, such as curriculum design and
accreditation requirements. Furthermore, issues such as
the ethical implications of AI (e.g., concerns over
academic integrity and student over-reliance on AI-
generated solutions) and faculty readiness to adopt AI
tools will also be addressed in this study. This study is
guided by three research questions, previously introduced
in the Introduction section. By answering these questions,
this research seeks to provide institutions with a clear
roadmap for integrating AI-driven innovations into their
programs while ensuring adherence to accreditation
standards.

This research integrates insights from educational
technology and accreditation policies. Unlike previous
studies that either focus exclusively on the technological
effectiveness of AI tools or discuss accreditation
requirements in broad terms, this study bridges the two
domains. By synthesizing research across CS education,
IS education, and higher education policy, we provide
actionable recommendations for educators.

Instead of focusing only on the implementation of AI
tools like auto-graders and coding assistants, this study
recommends revising course outcomes, refining
assessment methods, and enhancing continuous
improvement processes. Doing so ensures that AI-driven
innovations are aligned with ABET's student learning
outcomes and accreditation criteria. For example, when
AI tools are utilized to improve education, this paper
demonstrates how the data they produce can evaluate
student performance, thus supporting adherence to
accreditation standards. The article presents an organized

framework for the conscientious and efficient
incorporation of AI into Computer Science and
Information Systems curricula. Results from previous
research on various AI-tools back this approach and align
with accreditation criteria, ensuring that AI enhances
student learning outcomes while adhering to program
accreditation standards.

3. Methodology

A systematic review of recent academic publications was
performed, concentrating on AI-based educational tools
and their effects on learning outcomes, and the review
results were used to investigate their conformity with
accreditation criteria. Major academic databases were
searched, including IEEE Xplore, ACM Digital Library,
ERIC, Springer, and Elsevier, using keywords like “AI in
education,” “CS curriculum AI,” “intelligent tutoring,”
and “automated grading.” To ensure relevance, we
focused on studies from the last decade (2012–2023) and
prioritized those related to undergraduate CS and IS
programs.

Out of an initial selection of more than 200 papers, the
subsequent inclusion criteria were utilized: studies needed
to address AI's impact on teaching, curriculum
development, or accreditation within computer
science/information systems education. Any purely
theoretical works, K-12 studies without transferable
insights, and non-peer-reviewed articles were excluded.
After screening abstracts, the selection was narrowed to
60 papers, and a detailed full-text analysis left us with 36
key studies that provided strong evidence of AI's
educational applications.

For each study, the following contents were extracted:

• AI applications used (e.g., coding assistants,
tutoring systems, automated grading).

• Educational context (course type, student level,
class size).

• Measured outcomes (impact on student
performance, engagement).

• Curriculum accreditation considerations
(alignment with ABET standards, ethical
concerns, and practical challenges).

A diverse range of studies, from controlled experiments to
faculty perceptions, made it infeasible to perform a
statistical meta-analysis. Instead, a qualitative meta-
synthesis was performed by identifying common themes
across the literature. Thematic analysis identified four
main AI application areas: coding assistants, intelligent
tutoring systems, automated assessment, and industry
collaboration on AI projects. Emphasis was placed on the
abilities of the AI tools to enhance student learning,
teaching effectiveness, and goals related to ABET
accreditation. This organized strategy facilitated the
collection of robust evidence to discuss the practical uses
of AI in CS and IS education. The following sections

present these insights, examining how each AI tool works,
its impact, and how it can be integrated into accredited
curricula.

4. Discussion: How AI is Transforming
CS/IS Education

4.1 AI-Powered Coding Assistants

Tools like GitHub Copilot offer instantaneous coding
recommendations to students, functioning similarly to an
available 'pair programmer' [7]. Such code-assistance
tools help students by reducing frustration with syntax,
exposing them to multiple solution approaches, and
accelerating their coding progress [19][20]. For example,
learners may seek help while stuck on a programming
problem using a code-assistance tool that generates
multiple options for solutions [21][22]. Coding assistants'
possible advantages include decreasing student frustration
with syntax issues, offering template code, and enabling
more advanced problem-solving. Code assistants expose
students to multiple approaches to solving the problem,
which could be tapped as a learning opportunity to
develop program design and critical thinking skills.

Challenges: Despite its benefits, using AI coding
assistants raises concerns about academic integrity and
over-reliance [23][24]. If students copy AI-generated
code without understanding it, their learning suffers [25].
Instead of banning AI tools outright—an impractical
approach as they become widely available—educators are
shifting towards responsible AI use [26]. Responsible use
of AI includes teaching students how to engage critically
with AI outputs, verify suggestions, and explain their
thought processes. By doing so, students learn critical
thinking and debugging skills alongside coding.

Alignment with Accreditation: ABET's curriculum
criteria expect graduates to utilize contemporary tools in
their computing activities. The use of AI tools supports
this need, and the integration of AI tools may necessitate
an adaptation of the course outcomes and evaluations. For
instance, asking students to explain or improve upon AI-
generated code guarantees that they cultivate problem-
solving and debugging abilities instead of merely
reproducing answers.

With ABET's outcome and program criteria that
emphasise ethics and lifelong learning, it is important to
make students aware of how coding assistants work and
some of their limitations. For example, coding assistants
backed by large language models could occasionally give
errored responses or incorrect advice. Students need to
learn to verify the answers provided by the tool, which
requires critical evaluation of the coding solutions, which
ties into professional responsibilities (ABET outcome of
ethics and judgment).

4.2 Intelligent Tutoring Systems

AI-driven Intelligent Tutoring Systems (ITSs) offer
personalized, interactive learning experiences, especially
in programming courses [27]. In CS and IS education,
ITS often uses virtual programming tutors. These tutors
analyze student inputs, provide tailored hints, and help
clarify misconceptions, like a virtual teaching assistant
[27]. For example, an ITS for learning Java may ask a
student to write a loop and, upon errors, give targeted
hints, such as asking to check the initial value. Recent
developments include the integration of Large Language
Models in ITS, enabling interfaces with conversational
interactions [12]. In large classes with limited one-on-one
instructor time, ITSs ensure that every student gets instant
feedback and can learn independently. Research
consistently shows that adaptive tutoring improves
problem-solving skills and student success rates. By
tracking student progress, ITSs provide instructors
valuable insights into common errors and areas needing
reinforcement [28].

Challenges: The biggest concern with using AI-driven
ITS is ensuring students do not become too dependent on
AI tutors and instead develop independent problem-
solving abilities [10][27]. Studies have proposed
balancing AI assistance with reflective assignments where
students must explicitly document how they used AI
tutors and explain their problem-solving rationale [29].
However, another study recommends combining AI-based
tools with traditional teaching approaches like instructor-
led tutorials and peer mentoring to help students avoid
becoming overly reliant on AI tutors [23].

Alignment with Accreditation: ITS can help students
effectively grasp key learning concepts. These systems
also provide instructors with practical insights into how
students learn. For instance, by using AI tutors,
instructors can track the number of attempts students
typically need to solve problems or see how frequently
they use the hints. Gathering data on learners' behaviors
helps instructors identify areas where students might
struggle. When combined with traditional assessment
methods, data from ITS can provide a fine-grained
understanding of student achievement. However, faculty
will need to be involved in interpreting data collected
from the tutors so that they can adjust the tutoring content
accordingly.

4.3 Automated Assessment

AI-based grading systems can reliably and quickly handle
routine programming assessments, which lets instructors
spend less time on repetitive grading tasks and more time
on personalized teaching activities. These tools provide
instant feedback, allowing students to learn iteratively by
refining their work based on feedback before final
submission [30][31]. For educators, automated grading
improves scalability, essential for large classes, and

generates analytics highlighting everyday student
struggles. This data can guide curriculum improvements
and pinpoint topics that need additional attention.

Challenges: While auto-graders efficiently check code
correctness, they may struggle with assessing creativity,
style, or documentation quality [31][32]. Therefore, many
courses combine automated grading with manual
evaluation to ensure students meet professional coding
standards. Another concern of using auto graders is the
integrity of the assessment. The question banks and
solutions might circulate among student cohorts if the
same auto grader is used for tests each time. Instructors
need to change the question banks to maintain assessment
integrity continuously.

Alignment with Accreditation: Automated assessment
tools contribute to ABET's continuous improvement
requirement by providing direct evidence of student
performance. Automated graders could provide a wealth
of direct assessment data aggregated at course and
program levels to assess learning outcomes. For example,
if an outcome is related to programming proficiency, the
auto grader could record how many problems a student
solved and how many attempts they took to measure
programming proficiency. However, to maintain rigor,
assessments should ensure students engage in problem-
solving rather than just "coding to the test," which could
be mitigated by using a blend of automated and manual
grading to ensure that students gain sound problem-
solving skills. For example, the auto grader could check a
program's functionality, while an instructor can manually
check the design approach and coding style.

4.4 Industry Collaboration

Partnering with the industry ensures CS and IS programs
stay aligned with real-world AI applications. Industry-
academia collaborations can be guest lectures, capstone
projects, internships, or AI-focused course modules co-
developed with industry professionals. Such
collaborations expose students to the latest AI tools and
practices while giving them hands-on experience with
real-world challenges [33]. Industry collaborations help
students develop technical and professional skills, from
teamwork and communication to handling real datasets
and working within development constraints [34].
Programs that integrate industry insights into their
curriculum ensure that graduates are job ready [35]. For
CS and IS programs, industry collaboration can provide
practical data sets, problem statements, and exposure to
software platforms and project workflows that could
enrich student projects. For example, an IS program could
collaborate with a local company to prototype a machine
learning model to solve a business problem as part of a
class project, with company employees giving feedback to
student teams. Such experiences could expose students to
professional practices (such as agile methods and code

versioning) and the real-world constraints of deploying
machine learning models in production environments.

Challenges: Not all students have equal access to
industry projects, so ensuring broad participation is key.
Academia must also balance foundational learning with
industry-specific tools—focusing on relevant principles
despite changing technologies [36].

Alignment with Accreditation: From a curriculum
perspective, industry input is formally incorporated via
advisory boards that review program objectives and
outcomes. ABET program objectives criteria emphasizes
involving stakeholders like industry partners when
updating curricula. Collaborating with industry
professionals directly supports accreditation requirements
for responsiveness to stakeholder input while also
providing practical benefits and real-world experience for
students. Industry partners can help identify which AI
skills are most needed (for example, proficiency in data
analytics, cloud services, etc.) and help programs adjust
course contents.

AI-focused projects also map to ABET's teamwork and
communication outcomes, ensuring students gain the
skills necessary for professional practice. When students
work on an AI project with industry mentors, they learn
how to explain technical content to non-academic
stakeholders and document their work professionally.
Moreover, capstone projects in collaboration with
industry often serve as a culminating assessment of all
student outcomes. If such capstone projects involve AI
tools and methods, then the program must ensure that
students gain the prerequisite knowledge to work with
them, which might require curriculum restructuring.

ABET’s program educational objectives criteria embodies
the philosophy of preparing graduates for real-world
practice and lifelong learning. While companies might be
keen on students learning specific proprietary tools,
academia must focus on foundational principles.
Balancing these two goals requires an ongoing dialogue
between industry and academia. Nevertheless,
incorporating AI education helps students meet program
outcomes with a clear employment path. By seeing how
AI is being used in the industry, students gain the context
that could spark the motivation to master the theory
behind these tools and adapt to new tools in the future.

4.5 Final Thoughts: AI as a Learning Tool,
not a Shortcut

AI tools can be transformative for CS and IS courses.
However, effective use of AI tools that enrich student
learning and don't diminish students' critical thinking and
problem-solving skills requires thoughtful integration.
Through careful curriculum design and assessment
methods and with clear guidelines for AI use, institutions
can effectively utilize AI's advantages while preserving

academic standards and meeting accreditation
expectations.

This review identified four key areas where AI tools are
making a tangible impact: coding assistants, intelligent
tutors, automated grading, and industry collaborations.
When leveraged thoughtfully, these tools help address
persistent challenges by providing personalized learning,
instant feedback, and real-world applications. Rather than
conflicting with accreditation standards, AI can support
and strengthen ABET compliance when integrated
thoughtfully, offering new forms of assessment data and
ensuring curricula stay updated with industry
advancements. However, AI integration must be
accompanied by curriculum adaptations, clear guidelines,
and ethical training to maximize its benefits and avoid
pitfalls like over-reliance or misuse.

5. Key Recommendations for AI Integration

To help CS/IS programs incorporate AI while maintaining
ABET accreditation, we suggest the following strategies:

1. Align AI Tool Use with Learning Outcomes—
Update course objectives to explicitly include AI
competencies, such as evaluating AI-generated
code or using AI tools effectively in problem-
solving. Aligning AI tool use with learning
outcomes ensures that AI adoption is intentional
and measurable and supports accreditation
requirements.

2. Teach Responsible AI Use – Introduce ethics and
professional guidelines around AI, covering
issues like plagiarism, bias, and intellectual
property. Faculty training is also crucial;
instructors should understand AI tools to set
expectations, guide responsible use, and detect
misuse.

3. Leverage AI for Continuous Improvement – Use
data from AI tutors and automated grading
systems to track student performance trends,
identify learning gaps, and inform curriculum
adjustments. Using AI for continuous
improvement supports ABET’s emphasis on
evidence-based program assessment.

4. Maintain Human Oversight – AI should enhance,
not replace, traditional teaching methods. A
balanced approach—combining automated tools
with instructor-led discussions, manual grading,
and peer feedback—ensures students develop
deep, independent problem-solving skills.

5. Strengthen Industry Collaboration – Partnering
with companies on AI-driven provides students
with hands-on experience with real-world

applications while ensuring curricula stay
relevant to workforce demands. Industry
involvement also aligns with ABET’s
requirement for stakeholder engagement and
curriculum responsiveness.

By following these recommendations, institutions can
integrate AI thoughtfully, creating continuous innovation
while maintaining accreditation integrity. Table 1

summarizes the educational benefits of AI based tools
such as coding assistants, intelligent tutoring systems,
auto graders and align with ABET outcomes and criteria.
This table also show the use of AI tools align with ABET
outcomes and criteria for CS and IS programs that are
listed in Appendix A.

Table 1. Key AI Applications in CS/IS Education and Alignment with ABET Standards

AI Application Educational Benefits (Practical Impact) Alignment with ABET Standards (Criteria/SO)

AI-Powered
Coding Assistants
(e.g., GitHub
Copilot)

Increased coding productivity: helps
students write and complete code faster,
with fewer syntax errors.

Learning by example: expose students to
standard coding patterns and multiple
solution approaches.

Just-in-time support: reduce frustration and
keep students engaged through hints and
code suggestions.

Supports the use of modern tools in computing practice
(ABET Curriculum criteria). It frees time to focus on
design and address higher-level outcomes like problem
analysis and solution design (Student Outcomes 1 and 2).

Requires teaching ethical use, tying into professional
and ethical responsibility outcome (Student Outcome
4).

Intelligent
Tutoring Systems
(AI-driven
personalized
tutors)

Personalized learning: adaptive feedback
tailored to each student’s mistakes and pace,
improving understanding.

Scalability: provides one-on-one style help
in large classes, ensuring no student is left
behind.

Mastery and retention: students can practice
until mastery with guidance at each step,
leading to better retention of concepts.

Enhances attainment of student outcomes by ensuring
fundamental knowledge is solid for all students.

Provides rich assessment data on student performance
for continuous improvement (Criterion 4).

Encourages independent learning skills, aligning with the
outcome of lifelong learning (implied in ABET criteria
via staying current).

Automated
Assessment Tools
(auto grading and
feedback systems)

Immediate feedback: students learn from
mistakes in real time and can improve their
solutions through multiple attempts.

Consistency: objective and uniform grading
criteria improve fairness.

Efficiency: instructors save time on grading,
allowing more focus on teaching and
mentoring.

Directly supports assessment of outcomes – auto-grader
results serve as evidence of student proficiency (Criterion
4).

Ensures curriculum has appropriate evaluation
processes (Criterion 3 & 4) with quantitative and
qualitative measures.

Using such tools demonstrates the integration of current
educational practice in program delivery, which is
relevant to facilities and support criteria.

Industry
Collaboration
(AI-focused
projects,
internships,
curriculum input)

Relevance: students work on real-world AI
problems, making learning applied and up-
to-date with industry trends.

Skills: teamwork, communication, and
project management skills develop alongside
technical AI skills.

Networking: students gain mentorship and
connections that can lead to career
opportunities.

It satisfies ABET's call for constituency involvement in
the curriculum (Criterion 2), ensuring that program
objectives meet industry needs.

Reinforces professional skills like teamwork and
communication (Student Outcomes 3 and 5).

Keeps program educational objectives aligned with
evolving technology in the industry, aiding continuous
curriculum relevance (Criterion 4 and Program
Educational Objectives).

6. Conclusion

Even though this paper provides a structured approach for
incorporating AI into CS and IS curricula, ongoing
research is essential to keep pace with evolving
technologies. Future studies could empirically explore the
effectiveness of AI tutors vs. traditional instruction in
improving long-term learning. For example, controlled
experiments could study how much coding assistants
improve learning outcomes in a programming course or
how AI-backed tutors compare with human tutoring
regarding long-term retention of learning content.
Another area for investigation is developing frameworks
for AI literacy in CS/IS education—defining what every
student should understand about AI beyond just using AI
tools. Such a framework could inform standardized
curriculum guidelines in the future. More work needs to
be done on developing and implementing assessment
strategies that adapt to AI to ensure students are evaluated
based on their understanding rather than AI-generated
outputs. Assignments and exams may require rethinking,
and research could explore new forms of assessment that
require human creativity and critical thinking that cannot
be developed by relying on AI tools alone. From an
accreditation standpoint, it will be helpful to develop Case
studies of programs that have successfully integrated AI
and went through re-accreditation. Such case studies
could offer best practices for other institutions, as AI tools
and their implications for access and equity could become
issues. Future studies should consider how all students,
not just the ones from well-resourced institutions, could
correctly benefit from AI-backed education.

AI is reshaping how computing is taught, and its role will
only grow in the coming years. The challenge for
educators is not whether to adopt AI but how to do so
responsibly, ensuring it enriches learning without
compromising academic integrity or accreditation
standards. With careful integration of AI tools, thoughtful
updates to curricula, and consistent ethical guidance,
educational institutions can produce graduates who are
proficient with modern AI technologies and prepared to
navigate future technological changes ethically and
thoughtfully. Achieving this balance between embracing
innovation and maintaining accountability is essential for
effectively reshaping CS and IS education in today’s
rapidly evolving digital world.

References

[1] E. Eaton and S. L. Epstein, “Artificial Intelligence in
the CS2023 Undergraduate Computer Science
Curriculum: Rationale and Challenges,” Proc. 38th AAAI
Conf. on Artificial Intelligence (AAAI-24), AAAI Press,
2024, pp. 23078–23083.

[2] S. Stoykova and N. Shakev, “Artificial Intelligence for
Management Information Systems: Opportunities,

Challenges, and Future Directions,” Algorithms, vol. 16,
2023, p. 357. DOI: 10.3390/a16080357.
[3] A. Tlili, “Can artificial intelligence (AI) help in
computer science education? A meta-analysis approach,”
Revista de Pedagogía, vol. 82, 2024, pp. 131–154.

[4] C. Van Slyke, R. D. Johnson, and J. Sarabadani,
“Generative Artificial Intelligence in Information Systems
Education: Challenges, Consequences, and Responses,”
Communications of the Association for Information
Systems, vol. 53, 2023, pp. 1–21.

[5] M. Binhammad, A. Othman, L. Abuljadayel, H.
Mheiri, M. Alkaabi, and M. Almarri, “Investigating How
Generative AI Can Create Personalized Learning
Materials Tailored to Individual Student Needs,” Creative
Education, vol. 15, 2024, pp. 1499–1523. DOI:
10.4236/ce.2024.157091.

[6] OpenAI, ChatGPT, 2021. Available:
https://openai.com.

[7] GitHub, GitHub Copilot, 2021. Available:
https://copilot.github.com.

[8] S. Jalil, S. Rafi, T. D. LaToza, K. Moran, and W.
Lam, “ChatGPT and Software Testing Education:
Promises & Perils,” arXiv preprint arXiv:2302.03287,
2023.

[9] ABET, Criteria for Accrediting Computing Programs,
2024–2025, Computing Accreditation Commission, 2024.
Available: 2024-2025_CAC_Criteria.pdf

[10] C. Lin, A. Y. Huang, and O. H. Lu, “Artificial
intelligence in intelligent tutoring systems toward
sustainable education: A systematic review,” Smart
Learning Environments, vol. 10, 2023, pp. 1–22.

[11] P. Wangdi, “Integrating Artificial Intelligence in
Education,” Int. J. of Research in STEM Education, 2024.

[12] C.-H. Lai and C.-Y. Lin, “Analysis of learning
behaviors and outcomes for students with different
knowledge levels: A case study of intelligent tutoring
system for coding and learning (ITS-CAL),” Applied
Sciences, vol. 15, 2025, Article 1922.

[13] Python Tutor, “Visualize Python, Java, C, C++,
JavaScript, TypeScript, and Ruby code execution,”
Python Tutor. Available:
https://pythontutor.com/visualize.html#mode=edit.
[Accessed: Mar. 6, 2025].

[14] AlgoCademy, “Python Coding Practice with AI,”
AlgoCademy. Available:
https://algocademy.com/uses/python-coding-practice-
with-ai/. [Accessed: Mar. 6, 2025].

https://openai.com/
https://copilot.github.com/
https://www.abet.org/wp-content/uploads/2023/05/2024-2025_CAC_Criteria.pdf
https://pythontutor.com/visualize.html#mode=edit
https://algocademy.com/uses/python-coding-practice-with-ai/
https://algocademy.com/uses/python-coding-practice-with-ai/

[15] D. López-Fernández and R. Vergaz, "ChatGPT in
Computer Science Education: A Case Study on a
Database Administration Course," Applied Sciences, vol.
15, no. 2, p. 985, 2025. doi: 10.3390/app15020985.

[16] M. Messer, N. C. C. Brown, M. Kölling, and M. Shi,
“Automated grading and feedback tools for programming
education: A systematic review,” ACM Transactions on
Computing Education, vol. 24, 2024, pp. 1–43. DOI:
10.1145/3636515.

[17] Z. Liu, H. Tseng, and O. H. T. Lu, “The Feasibility
of Utilizing ChatGPT in Learning Analytics for the
Identification of At-Risk Students,” Proc. CEUR
Workshop, vol. 3667, 2024.

[18] Learning Analytics, “Exploring the Role of GPT as
Virtual Teaching Assistants in Online Discussion
Forums,” University of Pennsylvania.

[19] M. Liffiton, B. Sheese, J. Savelka, and P. Denny,
“CodeHelp: Using Large Language Models with
Guardrails for Scalable Support in Programming
Classes,” arXiv preprint arXiv:2308.0692, 2023.

[20] D. López-Fernández and R. Vergaz, “ChatGPT in
Computer Science Education: A Case Study on a
Database Administration Course,” Applied Sciences, vol.
15, 2025, Article 985. DOI: 10.3390/app15020985.

[21] T. Wang et al., “Exploring the Role of AI Assistants
in Computer Science Education: Methods, Implications,
and Instructor Perspectives,” in Proceedings of the 2023
IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Washington, DC, USA,
2023, pp. 92-102. doi: 10.1109/VL-
HCC57772.2023.00018.

[22] P. Menon, “Exploring GitHub Copilot Assistance for
Working with Classes in a Programming Course,” Issues
in Information Systems, vol. 24, 2023, pp. 66–81.

[23] R. Zviel-Girshin, “The Good and Bad of AI Tools in
Novice Programming Education,” Education Sciences,
vol. 14, 2024, p. 1089. DOI: 10.3390/educsci14101089.

[24] J. Finnie-Ansley, P. Denny, B. A. Becker, A.
Luxton-Reilly, and J. Prather, “The robots are coming:
Exploring the implications of OpenAI Codex on
introductory programming,” Proc. 24th Australasian
Computing Education Conf., 2022, pp. 10–19.

[25] B. A. Becker, P. Denny, J. Finnie-Ansley, A.
Luxton-Reilly, J. Prather, and E. A. Santos,
“Programming is hard—or at least it used to be:
Educational opportunities and challenges of code
generation,” Proc. 54th ACM Technical Symposium on
Computer Science Education V. 1, ACM, New York, NY,
USA, 2023, pp. 500–506.

[26] S. Lau and P. J. Guo, “From ‘Ban It Till We
Understand It’ to ‘Resistance Is Futile’: How University
Programming Instructors Plan to Adapt as More Students
Use AI Code Generation and Explanation Tools,” Proc.
ACM Int. Computing Education Research Conf. (ICER
’23), ACM, 2023, pp. 20–31. DOI:
10.1145/3568813.3600138.

[27] S. Feng, A. J. Magana, and D. Kao, “A Systematic
Review of Literature on the Effectiveness of Intelligent
Tutoring Systems in STEM,” Proc. IEEE Frontiers in
Education Conf. (FIE), 2021, pp. 1–9. DOI:
10.1109/FIE49875.2021.9637240.

[28] M. Maniktala, M. Chi, and T. Barnes, “Enhancing a
student productivity model for adaptive problem-solving
assistance,” User Modeling and User-Adapted
Interaction, vol. 33, 2023, pp. 159–188. DOI:
10.1007/s11257-022-09338-7.

[29] B. Yuan and J. Hu, “Generative AI as a Tool for
Enhancing Reflective Learning in Students,” arXiv
preprint arXiv:2412.02603, 2024.

[30] G. Nagakalyani, S. Chaudhary, V. Apte, G.
Ramakrishnan, and S. Tamilselvam, "Design and
Evaluation of an AI-Assisted Grading Tool for
Introductory Programming Assignments: An Experience
Report," in Proceedings of the 56th ACM Technical
Symposium on Computer Science Education V. 1
(SIGCSETS 2025), New York, NY, USA, 2025, pp. 805–
811. doi: 10.1145/3641554.3701913.

[31] M. Messer, N. C. C. Brown, M. Kölling, and M. Shi,
"Automated grading and feedback tools for programming
education: A systematic review," ACM Transactions on
Computing Education, vol. 24, no. 1, pp. 1–43, 2024.

[32] Z. Li and W. Hsu, "Am I Wrong, or Is the
Autograder Wrong? Effects of AI Grading Errors on
Learning," in Proceedings of the ACM International
Computing Education Research Conference (ICER),
Chicago, IL, USA, Aug. 2023.

[33] A. Mohammadi and S. Babaei, Enhancing AI
Technology Progression through Industry-Academia
Collaborative Partnerships, Journal of Academy of
Strategic Management, 2024.

[34] A. Alzahrani, "A Comparative Study of Machine
Learning Algorithms for Predicting Student
Performance," in Proceedings of the International
Conference on Artificial Intelligence and Robotics
(ICAIR), 2025.

[35] D. Satterfield and J. Chang, "Industry and Academia
Collaborative Learning: The CSULB and ISSIP AI Collab
Pilot Program," in The Human Side of Service
Engineering, C. Leitner, R. Nägele, C. Bassano, and D.

Satterfield, Eds., AHFE International Conference, vol.
143, AHFE Open Access, USA, 2024. doi:
10.54941/ahfe1005101.

[36] A. Author et al., Tool Learning with Foundation
Models, ACM Computing Surveys, vol. 56, 2024.
Available: https://dl.acm.org/doi/full/10.1145/3704435.

https://dl.acm.org/doi/full/10.1145/3704435

APPENDIX A

Student Outcomes(2024-25): The ABET Computing Accreditation Commission (CAC) has outlined specific Student Outcomes . These
are general outcomes common to both CS and IS programs.

Outcome
Number Description

1 Analyze a complex computing problem and apply computing principles and other relevant disciplines to identify solutions.

2 Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of
the program’s discipline.

3 Communicate effectively in a variety of professional contexts.

4 Recognize professional responsibilities and make informed judgments based on legal and ethical principles in computing
practice.

5 Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.
Summary of the latest ABET CAC criteria (2024-2025):
Criterion Title Description

1 Students

Student performance must be evaluated. Student progress must be monitored to foster success in attaining
student outcomes, thereby enabling graduates to attain program educational objectives.
Students must be advised regarding curriculum and career matters. The program must have and enforce
policies for accepting both new and transfer students, awarding appropriate academic credit for courses taken
at other institutions, and awarding appropriate academic credit for work in lieu of courses taken at the
institution.
The program must have and enforce procedures to ensure and document that students who graduate meet all
graduation requirements.

2
Program
Educational
Objectives

The program must have published program educational objectives that are consistent with the mission of the
institution, the needs of the program’s various constituencies, and these criteria. There must be a documented,
systematically utilized, and effective process, involving program constituencies, for the periodic review of
these program educational objectives that ensures they remain consistent with the institutional mission, the
program’s constituents’ needs, and these criteria.

3 Student
Outcomes

Programs must define and document outcomes, ensuring students can analyze complex problems, design
computing-based solutions, communicate effectively, recognize ethical responsibilities, and function in
teams. See Appendix A for a list of general student outcomes common to CS and IS programs.

4 Continuous
Improvement

The program must regularly use appropriate, documented processes for assessing and evaluating the extent to
which the student outcomes are being attained.
The results of these evaluations must be systematically utilized as input for the program’s continuous
improvement actions.
Other available information may also be used to assist in the continuous improvement of the program.

5 Curriculum

The program’s requirements must be consistent with its program educational objectives and designed in such
a way that each of the student outcomes can be attained. The curriculum must combine technical,
professional, and general education components to prepare students for a career, further study, and lifelong
professional development in the computing discipline associated with the program.
Must offer a comprehensive curriculum combining technical, professional, and general education with at least
30 credits of computing topics covering both fundamentals and advanced content.
The computing topics must include: 1. Techniques, skills, and tools necessary for computing practice. 2.
Principles and practices of security and privacy in computing. 3. Local and global impacts of computing
solutions on individuals, organizations, and society

6 Faculty Faculty members must have qualifications and expertise aligned with the program’s requirements, maintain
professional competence, and be sufficient in number to ensure continuity and effective instruction.

7 Facilities Facilities must include adequate, maintained classrooms, labs, offices, and modern computing resources to
effectively support student learning and faculty activities.

These criteria are detailed in the ABET 2024-2025 Criteria for Accrediting Computing Programs document. For more details
on each criteria refer to the ABET CAC documentation: 2024-2025_CAC_Criteria.pdf

https://www.abet.org/wp-content/uploads/2023/05/2024-2025_CAC_Criteria.pdf

TRAINING A NEURAL NETWORK TO KICK A BALL IN ROCKET LEAGUE

Dr. Girard

cdgira@ship.edu
Shippensburg University

Achraf Jamjama
simoachk@gmail.com

ABSTRACT
Rocket League is a soccer-like game played with cars. A
few years ago, a framework was released to allow for the
development of bots. Using this framework, neural
networks were trained to kick a ball in different directions
from different starting locations. This paper looks at how
temporal information affected the accuracy of the training.
Initial results showed no gain in accuracy.

KEY WORDS
Neural Network, Path Following, Rocket League

1 Introduction

Neural networks learn by adjusting weights so that they
correctly predict the output from a given input. The design
of the neural network has four key aspects: how many
nodes in each layer, how the nodes are connected, how
many layers, and how values are computed. As such there
are many kinds of neural networks, each designed for the
problem it seeks to solve. At the core a neural network tries
to find patterns, so they perform best when inputs do not
generate conflicting outputs. One example of a neural
network is shown in figure 1 [3,7,8,10,11,15].

Figure 1: Connected Neural Network [11]

2 Background

In the game of Rocket League, see Figure 2, one of the
primary goals of the game is to hit a large ball in a specific
direction with your car. When a ball is struck, what
direction the ball goes and how far it goes depends on the
angle the car hits the ball from and the speed of the car.
Key information available at a point in time to help with
this is: location of the ball, location of car, direction of car,
and speed of car. For more complex scenarios additional
information would be: speed of ball, direction of ball,
location of other car, etc. For this work it was assumed the
ball was stationary and no other cars on the field [1].

Figure 2: Rocket League [13]

2.1 RLBot

RLBot is a framework for creating bots able to play in
Rocket League using a wide range of languages. The
framework provides a tool called RLBotGUI for easily
creating a base bot in Python, Rust, or Scratch.
Additionally, with a bit more work it is possible to build
bots in Java, C#, C++, and JavaScript. This work used
Python as the development language [1].

Through the bot framework it is possible to access a wide
range of information using a “Game Tick Packet” or GTP
for short. The GTP provides information on the ball, each
car, etc… Location information is stored as three floats
representing the x, y, and z position. Velocity is also stored

as three floats representing speed in the x, y and z
directions. In Rocket League the z axis represents the
vertical axis. Additionally, commands are sent back using
a “ControllerState” or CS for short. Some key commands
are throttle and steer, see table 2 for a more complete list
[2]. Based on the data from experiments here, a GTP was
issued, and a CS could be issued about 27 times a second.

Command Type Description
throttle float -1 for full reverse, 1 for full forward

steer float -1 for full left, 1 for full right
pitch float -1 for nose down, 1 for nose up
yaw float -1 for full left, 1 for full right
roll float -1 for roll left, 1 for roll right

jump bool true/false press the jump button
boost bool true/false press the boost button

handbrake bool true/false press the handbrake button
use_item bool true if you want to use a rumble item

Table 1: ControllerState Options [2]

2.2 RLBot Training

While RLBotGUI provides tools to create a bot and deploy
it in a game, it does not provide a way to train a bot. For
this research RLBotTraining is used to gather data for
training a neural network and to evaluate the results of said
training. This framework provides support to setup one or
more scenarios in Rocket League with one or more bots
and a fixed time limit. It is then possible to gather data
either from the bots directly or from RLBotTraining.
However, one shortcoming of this framework is there is
only limited communication between the training
framework and the bots in the scenario [12].

To create a scenario in RLBotTrainer one or more exercises
are created. A list is then created of each exercise and that
list is played out in order by RLBotTrainer in an infinite
loop until stopped. Each exercise can be tweaked using
input parameters. For example, an exercise to kick a ball
can be tweaked such that the car or ball start in different
locations. Additionally, RLBotTrainer allows for graders
to be designed to determine if the bot succeeded or not.
The graders can check for things such as: was a goal scored
or if the car travelled a certain distance. The grader also
determines how long each exercise is allowed to run before
automatically failing [12].

2.3 Time Dependent Neural Networks

Neural networks take an input and produce an output. In
some cases the correct output is influenced not just by the
present state, but also a previous state or states. For
problems of this type there are multiple approaches to
implementing a time dependent neural network. One
approach is the use of a long-short term memory network,
or LSTM. Another approach is by simply adding
additional input nodes to represent multiple time slices.

Long-Short Term Memory (LSTM) networks utilize
special memory nodes as shown in figure 3. These nodes
compute their output by combining the present input (E)
with what they have seen recently (STM) and over a long
period of time (LTM). Key to their approach is large
changes in what is occurring (e.g. car completely changes
direction) will cause the LTM to reset and start over. Thus
the LSTM takes the approach that something completely
different has started and as such the previous long-term
past is no longer of use [9].

Figure 3: LSTM Memory Node [9]

Encoding the time slices in the input layer allows the use
of a basic feed forward neural network. It will function
similar to an LSTM, but with some downsides. First, it
takes a lot of input nodes to allow it to follow long term
trends. As such it tends to behave more like an LSTM
without the LTM part, so more of just a STM. As such, it
doesn’t track long term trends well, nor does it have the
built-in structure to realize when sudden shifts occur. The
upside is it can be implemented with a basic feed forward
neural network without any changes.

The work here only uses additional input nodes to provide
information about previous time periods. Use of an LSTM
was not tested. See section 6 for how this approach might
be utilized in later work.

2.4 Representing Location

Representing location in a neural network can be a
challenge. Due to how neural networks respond to changes
it is not possible to simply encode the coordinate locations
directly [14]. The approach here uses direction to and
distance of objects to convey location information to the
neural network. Using this approach will allow for the
environment to be represented with a small number of
nodes, while hopefully producing accurate results
[5,14,16].

3 Experiment Design

Each neural network will learn how to “kick” a ball a
specified direction in Rocket League. To improve learning
the car will have different starting points.

The input to the neural network is broken up into three
approaches: Just the immediate information, immediate
plus previous, and immediate plus four-steps ago previous.
For all three approaches the output layer will be the same.

3.1 Hypotheses

Because movement is usually about changes over time, the
assumption is temporal information will help the neural
network perform better. So, the hypotheses are:

H1: The four-step approach will do better than
immediate or immediate and previous.

H2: The immediate and previous approach will do
better than immediate by itself.

3.2 Scenario Setup

The ball always starts at roughly the 0,0 location. Because
of limits of RLBotTrainer, to inform the bot of which run
was taking place the ball’s starting x position ranged from
0.1 to 1.5 and starting y from 1 to 3. As the ball has a
diameter of 184, this small variance in starting position
should have a negligible effect on learning performance.

The car starts in three locations shown in table 2. These
start locations were chosen by drawing a circle of radius
2000 around the ball. Then the start, end, and middle
points for one quarter of that circle were selected. The
dimensions of the arena used were: -4,100 to 4,100 along
the X-Axis and -5,100 to 5,100 along the Y-Axis. The Z-
Axis was ignored as the car stayed on the ground. The car
always drove with throttle set to 1.

 X Coordinate Y Coordinate
Position 1 0 2000
Position 2 765 1847
Position 3 1414 1414

Table 2: Starting Points for the Car

To generate training data, from each start point, the car was
told to drive to one of the three first locations shown in
table 3. Once the car reached the specified location it would
then steer directly to the ball. Once the ball was hit the
direction the ball went was recorded. This produced 9
different training scenarios.

 X Coordinate Y Coordinate
Destination 1 0 1250
Destination 2 478 1154
Destination 3 883 883
Destination 4 625 1082
Destination 5 323 1207

Table 3: Destination Points for the Car

To evaluate of how well the neural networks generalized
the training, six additional scenarios were created from the

same three starting points. From each starting point the car
would instead first head to one of the last two destinations
in table 3. As before the direction the ball went was
recorded.

3.3 Neural Network Setup

The immediate only method has a total of 8 input nodes: 2
for direction to the ball, 1 for distance to the ball, 1 for
direction car is travelling, 2 for speed car is traveling in the
x,y plane, and 2 for direction to kick the ball. The other
two methods added 6 additional nodes that included all the
previous information except the direction to kick the ball,
as that stayed constant. In all cases there was only one
output node that represented what to set the steer value to
for the ControllerState.

After some test runs the number of hidden nodes for all
methods was set to 20. For the activation function a ReLU
type approach was used, see equation 1.

(1) 𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥) = �
max (2,1 + (x − 1) ∗ 0.01 if x > 1

𝑥𝑥 𝑖𝑖𝑖𝑖 − 1 ≤ 𝑥𝑥 ≤ 1
min (−2,−1 + (x + 1) ∗ 0.01 if x < 1

The basic ReLU activation function converts any value less
than 0 to 0, and leaves unchanged any value greater than 0.
However, having a hard cutoff can have unintended effects.
A traditional leaky ReLU allows for slow growth in values
when the input is less than 0 [4,6]. However, this still
allows growth to infinity which created unwanted side
effects in testing. As such the neural network uses the
approach shown in equation 1. This allowed for both
positive and negative values, no immediate hard cutoff, but
also no growth to infinity [5].

3.4 Neural Network Training

Initial values for weights ranged from -1 to 1. The learning
rate started at 0.05 and then gradually reduced until it
reached 0.0099. A neural network was trained on the 9
scenarios until 200 training attempts had occurred without
additional improvement. The number of training iterations
ranged from 344 to 2214. Each training iteration involved
showing the neural network one of the nine training
scenarios. Each training scenario consisted, on average, of
76 items. Where each item was the state of the game and
what action the car should take next.

After each training iteration the neural network’s level of
error was computed using all nine scenarios. During each
training pass the neural network would train on the nine
scenarios in random order, plus the scenarios it performed
the worst on the previous pass. This allowed for scenarios
with more complex driving to get more training time. The
neural network during training with the lowest error was
saved. For each setup being tested 10 neural networks were

trained for evaluation, creating a total of 30 neural
networks.

For evaluation each trained neural network was measured
on the original 9 scenarios and the 6 additional scenarios
detailed in section 3.2. The absolute error in both the x
direction and y direction was recorded or if the car
completely failed to hit the ball.

Because of fails two levels of comparison were required.
First, for each network the number of fails was recorded.
These fails were averaged across all 10 neural networks for
a given setup. The other level of comparison involved first
averaging for each scenario the error in the x and y
direction. Then all of these were averaged together to give
an overall error for a given setup. This approach was taken
as due to fails, not all networks would have data for all
scenarios. This ensured each scenario was given equal
weight in the final computation of overall error.

4 Solution Description

The Python programming language was utilized to
implement a neural network with one hidden layer and to
create the bot for Rocket League. It did not utilize a bias
and used the specialized ReLU discussed in section 3.3 as
the activation function. RLBotTraining was used to craft
and run all the scenarios. Because of the design of the
framework each network had to be run individually, rather
than one large batch. Data was recorded in csv format and
then transferred to an Excel spreadsheet for final analysis.

 15 Scenarios

Immediate X

Plus Previous X

Four-Step X

Table 4: Block Design

In Table 4, Immediate stands for only using the immediate
input approach, Plus Previous for using the immediate plus
previous data approach, and Four-Step for using the
immediate plus four-steps before. The accuracy of the
network is measured based on how far off the resulting ball
direction unit vector was from the correct value.

Training a single neural network took approximately one
minute, though this varied greatly depending on how many
iterations it trained. To gather evaluation data, it took
about 3 minutes for each neural network. Each scenario
had a cutoff time of 4.5 seconds. This time was selected
based on ensuring the simulation stopped before a kicked
ball would hit something. As hitting something would
change the appearance of what direction the ball headed.

5 Results

Table 5 shows the average error for Immediate, Plus
Previous, and Four-Step from running the 15 scenarios. As
mentioned, fails are not included in the error computed
here. From the standard deviation it can be seen there is a
fairly wide range of accuracy across the neural networks.

15
Scenarios

Avg
Error

Rise (Y)

Std Dev
Rise (Y)

Avg
Error

Run (X)

Std Dev
Run (X)

Immediate 0.0986 0.111 0.0964 0.0873

Plus
Previous

0.0915 0.0712 0.113 0.0773

Four-Step 0.0949 0.0681 0.125 0.0528

Table 5: Accuracy Results – 15 Scenarios

Table 6 shows the results of applying a paired t-test to
compare the averages in table 5. Based on the T-scores we
can say with confidence that none of the approaches did
any better than the others.

Approach A Approach B Rise (Y) Run (X)
Immediate Plus Previous 0.160 0.436
Immediate Four-Step 0.0845 0.837

Plus Previous Four-Step 0.103 0.370
Table 6: T-test Results – 15 Scenarios

Table 7 shows the average number of fails per approach.

Fails Avg
Fails

Std Dev
Fails

Immediate 1.5 1.65

Plus Previous 0.8 1.23

Four-Step 1.1 1.29

Table 7: Accuracy Results – Fails

Table 8 shows the results of running a paired t-test to
compare the average number of fails. For the fails we see
the same result as from the 15 scenario error differences, in
that there is no statistical difference between the results. As
additional support for this, all three approaches had five
neural networks that recorded failures and five that did not.

Approach A Approach B Fails
Immediate Plus Previous 1.02
Immediate Four-Step 0.574

Plus Previous Four-Step 0.506
Table 8: T-test Results – Fails

Some other notes from the results, the Plus Previous
approach had the best overall neural network with zero
fails and an x error of 0.0756 and y error of 0.0499. The

best Immediate neural network had zero fails and an x error
of 0.0892 and y error of 0.0565. Lastly, the best Four-Step
neural network had zero fails and an x error of 0.104 and a
y error of 0.0734.

6 Conclusion

First, each approach was able to train at least one neural
network that could effectively kick a ball the approximate
direction requested. Second, none of the hypotheses were
supported. However, from watching the training there are
obviously challenges to the neural networks learning the
correct paths, likely because some paths were very similar
at times, but ended with the ball heading in different
directions.

Future work, need to find which similar paths were causing
the most conflict and determine how to model them as
different to the neural network. Related to that, investigate
if an LSTM is able to overcome the shortfalls this
simplified time slice approach took. Also, it could be the
data used to train the neural networks had design flaws that
need to be addressed. Lastly, once this problem is solved
the goal would be to train the car to strike a moving ball to
go in a specified direction.

References:
[1] RLBot. Dec 15th, 2024, from https://rlbot.org/

[2] Redd, etc al. Input and Output Data. RLBot GitHub,
Nov 25th 2022. Input and Output Data ·
RLBot/RLBotPythonExample Wiki · GitHub

[3] Perry, Steven J., Create an artificial neural network
using the Neuroph Java framework, IBM Developer. Jan
8, 2018. [Online]. Available:
https://developer.ibm.com/tutorials/cc-artificial-neural-
networks-neuroph-machine-learning

[4] P. Baheti, Activation Functions in Neural Networks
[12 Types & Use Cases], v7 Labs, Feb. 02, 2023.
https://www.v7labs.com/blog/neural-networks-activation-
functions

[5] Girard, C. Dudley, How to Position vs Direction
Affects Learning to Pass a Ball, 39th Annual Conference
of PACISE, 2024.

[6] V. Gupta, Understanding Feedforward Neural
Networks, LearnOpenCV, 20-Apr-2021. [Online].
Available: https://learnopencv.com/understanding-
feedforward-neural-networks/

[7] M. Ibrahim, M. Louie, C. Modarres, and J. Paisley,
Global Explanations of Neural Networks, Proceedings of
the 2019 AAAI/ACM Conference on AI, Ethics, and
Society, 2019.

[8] D. M. F. Izidio, A. P. D. A. Ferreira, and E. N. D.
S. Barros, Towards better generalization in WLAN
positioning systems with genetic algorithms and neural
networks, Proceedings of the Genetic and Evolutionary
Computation Conference, 2019.

[9] Moghar, Adil and Mhamed Hamiche, Stock Market
Prediction Using LSTM Recurrent Neural Network,
Procedia Computer Science, Vol. 170, 2020, pp 1168-
1173.

[10] Tesauro, Gerald, Temporal Difference Learning and
TD-Gammon, Communications of the ACM, Vol. 38 No.
3, March 1995.

[11] Mazur, A Step by Step Backpropagation Example,
Matt Mazur, 15-Feb-2022. [Online]. Available:
https://mattmazur.com/2015/03/17/a-step-by-step-
backpropagation-example/

[12] RLBot, RLBotTraining, Youtube, 2019.
RLBotTraining Tutorial - YouTube

[13] Evample, Rocket League Highlights – 77, Youtube,
Oct 9th, 2023. 2024 TREMFYA NOW APPROVED
BUMPER

[14] Lewis, Joshua and C. Dudley Girard, Position
Information with Neural Networks, 38th Annual
Conference of PACISE, 2023.

[15] Janji, Salim and Adrian Kliks, Neural Networks for
Path Planning, arxiv.org, 2022. [2207.00874] Neural
Networks for Path Planning

[16] Gomes, Gilzamir, Creto A. Vidal, Joaquim B.
Cavalcante-Neto, and Yuri LB Nogueira, Two level
control of non-player characters for navigation in 3d
games scenes: A deep reinforcement learning approach,
20th Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames), pp. 182-190. IEEE,
2021

https://rlbot.org/
https://github.com/RLBot/RLBotPythonExample/wiki/Input-and-Output-Data
https://github.com/RLBot/RLBotPythonExample/wiki/Input-and-Output-Data
https://developer.ibm.com/tutorials/cc-artificial-neural-networks-neuroph-machine-learning
https://developer.ibm.com/tutorials/cc-artificial-neural-networks-neuroph-machine-learning
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://learnopencv.com/understanding-feedforward-neural-networks/
https://learnopencv.com/understanding-feedforward-neural-networks/
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://www.youtube.com/playlist?list=PL6LKXu1RlPdxh9vxmG1y2sghQwK47_gCH
https://www.youtube.com/watch?v=q0Lunh8ErzA
https://www.youtube.com/watch?v=q0Lunh8ErzA
https://arxiv.org/abs/2207.00874
https://arxiv.org/abs/2207.00874

FROM KNUTT’S AXIOMS TO THE ART GALLERY PROBLEM

Zhongxiu Yang
Millersville University of Pennsylvania

zhongxiu.yang@millersville.edu

ABSTRACT
Art gallery problem is a well-studied visibility problem in
computational geometry, one variant can be placing the min-
imum number of guards that can observe the entire simple
polygon, where the points can be placed anywhere inside the
polygon. In this paper, we analyze this problem starting from
Knutt’s axioms and show structural lemmas that can be used
to prove the VC-dimension of visibility on the simple poly-
gon.

KEY WORDS
Art Gallery Problem · VC-Dimension · Visibility

1 Introduction
The set-cover problem is a classic NP-Hard prob-
lem. Given a set U of n elements and a collection
S = {S1, S2, S3, . . . , Sm} of m subsets of U such that⋃
i

Si = U , the set-cover problem is to select as few subsets

as possible from S such that their union covers U . It does
not have a polynomial-time solution available, and the
greedy algorithm provides a Θ(logn) approximation. The
interesting thing is that, when it comes to geometry, how
much can we do it better?

1.1 Problem Statement
A simple polygon P is defined by a set of points
V = {p1, p2, . . . , pn}, and the connecting edges
E = {p1p2, p2p3, . . . , pn−1pn, pnp1} that do not inter-
sect each other. We define two points p and q “see” each
other if the line segment pq fully inside polygon, and one
point p “sees” a line segment qr if p sees q and p sees r. See
Figure 1 for the illustration.

We also define (p, q) to be a sequence of points on the
boundary of the polygon from p to q in counterclockwise
order excluding p and q, and [p, q] to be the same sequence of
points but including p and q. And we also say that a point pq
is pierced if pq leaves the polygon, that is, p sees q if and only
if pq is not pierced. If every line segment at the boundary of
the polygon was seen by some point, then the simple polygon
is “covered” by such a set of points. One variant of the art
gallery problem is to place the minimum number of “guard”
points G such that the entire polygon P is covered by some

p

q

r

Figure 1: Given qr on the boundary of polygon, p sees q and p sees
r implies p sees qr

guard g ∈ G, the basic version of this problem is called
vertex guarding, where guards only can be placed on the
boundary of the polygon; we are interested in another version
of this problem, which is called point guarding, which means
that the guards can be placed anywhere inside the polygon.
There are many applications based on the geometric model
of art gallery problems, such as placing surveillance cameras
or indoor motion detectors.

1.2 VC-Dimension
VC-Dimension is an important measure of the complexity of
the set system. We say that a guard set G is shattered if every
subset of G can be seen by some “viewpoint” v ∈ V . The
VC-Dimension is the largest d such that there exists a sim-
ple polygon P and a guard set G of size d can be shattered.
The motivation of finding VC-Dimension is that Brönnimann
and Goodrich [2] give a polynomial-time O(logOPT) ap-
proximation algorithm for any set system with constant VC-
Dimension, where OPT is the size of an optimal cover.
Clearly, the VC-Dimension for the classic set-cover problem
is infinity, and we hope to find a constant VC-Dimension for
this problem.

1.3 Order Claim
One of the key properties about the visibility of simple poly-
gons is the order claim.
Claim 1. Let p, q, r, s, t, u be six points on the boundary of a
simple polygon in counterclockwise order, if (1) p sees r, (2)
s sees q, (3) p sees t, and (4) s sees u, then p sees s.
See Figure 2 for the illustration. Without loss of generality,
let y(p) = y(s). Since p sees r and y(r) < y(p), then there
is no point in (p, r) can be placed above pr, similarly, there

mailto:zhongxiu.yang@millersville.edu

is no point in (q, s) can be placed above qs. Since p sees t
and s sees u we know that there is no point in (t, p) and (s, u)
can be placed below tp and su respectively. That implies that
there is no point in (p, s) that can be placed above ps and
there is no point in (s, p) that can be placed below ps, there-
fore p sees s.
For the vertex guarding version of the problem, we can see

p

q r

s

tu

Figure 2: Order Claim

that the order claim is very useful since we can discretize the
points by sorting the guards and viewpoints along the bound-
ary in counterclockwise order, then we can potentially reject
some cases where the configuration of the points violates the
order claim. But when it comes to the point guarding version
of the problem, it would be difficult to discretize the points
since every point can be placed anywhere inside the polygon,
so we need a better approach to categorize every placement
of the points in terms of visibility.

1.4 Knutt’s Axioms
One such way to obtain such a discrete set of points is through
the use of counterclockwise/clockwise systems as described
by Knuth [1]. Let p, q, r be three points in the polygon, we
say that pqr is a triple such that pqr is true (or T) if p, q,
r are traversed in counterclockwise order; otherwise, we say
that pqr is false (or F). See Figure 3 for the illustration. The
following five axioms are properties that a set of triples has to
satisfy in order to be placed on a 2D plane.

p

q

r

Figure 3: r is on the counterclockwise side of pq, thus pqr = true

Axiom 1. pqr =⇒ qrp

Axiom 2. pqr =⇒ ¬prq
Axiom 3. pqr ∨ prq

Axiom 4. tqr ∧ ptr ∧ pqt =⇒ pqr

Axiom 5. tsp ∧ tsq ∧ tsr ∧ tpq ∧ tqr =⇒ tpr

2 Structural Lemmas
The following lemmas are the main contribution to the prob-
lem, they show how to discretize every placement of points to
find the upper bound of the VC-Dimension.

Lemma 2.1. Let four points p, q, r, t in the 2D plane, if
pqr = true, then pqt, qrt and rpt cannot all be false; and if
pqr = false, then pqt, qrt and rpt cannot all be true.

Proof. See Figure 4 for the illustration. Let pqr = true,
then the line ←→pq , ←→qr , and ←→rp divide the entire 2D plane
into eight regions, and the values of the tuple (pqt, qrt, rpt)
can be (T, T, T), (T, T, F), (T, F, T), (T, F, F), (F, T, T),
(F, T, F), (F, F, T). Similarly, if pqr = false, then there is
no (T, T, T) region on the plane.

p q

r

(T, T, T)

(F, T, F)
(F, T, T)

(F, F, T)

(T, F, T)

(T, F, F)

(T, T, F)

Figure 4: pqr = false implies there is no (F, F, F) region on the
plane

Lemma 2.2. Let four points a, b, c, d in the 2D plane and ab
intersect cd. If abc = true and abd = false, then placing a
point e such that (abe, cde, bde) = (T, F, T) is infeasible.

Proof. See Figure 5 for the illustration. Since ab intersect cd,
abc = true and abd = false, we have cda = false and
cdb = true, otherwise cd does not intersect ab. Consider
the placement on point e. Essentially,

←→
ab and

←→
cd divide the

entire 2D plane into four regions, and e must be in one of the
regions. Let us say e is in the “northwest” region as shown
without loss of generality, and name the intersection point of
ab and cd to be o, then the entire plane angle ∠aoc is on the
clockwise side of bd. Since e is in ∠aoc, then bde cannot be
true, as well as bda and bdc.

a b

c

d

e

o

Figure 5: bde must be false since e is in ∠aoc

Lemma 2.3. Let five points a, b, c, d, e in the 2D plane, let
abc = true, abd = true, dca = false, dcb = true, and
abe = true. If dce = true, then ace = true and ade =

true. Symmetrically, if dce = false, then bce = true and
bde = true.

Proof. See Figure 6 for the illustration. Since abc = true
and abd = true, both c and d are on the counterclockwise
side of ab. Since dca = false, dcb = true, then a is on the
clockwise side of

−→
dc and b is on the counterclockwise side

of
−→
dc. Since abe = true, e has to be in the third or fourth

“quadrant” defined by
−→
ab and

−→
cd. Clearly, any point in the

fourth “quadrant” is on the clockwise side of ac and ad. That
implies if dce = true, then ace = true and ade = true.
Symmetrically, dce = false implies that the point e is on the
clockwise side of dc, so bce = true and bde = true.

a b

c
d

e

Figure 6: e is on the clockwise side of ac and ad

Lemma 2.4. Let four points a, b, c, d in the 2D plane and
←→
ab

intersect with
←→
cd . Let abc = false, abd = false, dca =

false, dcb = false. If there exists a point e such that abe =
true and dce = true, then if ace = false, then every point
f such that abf = true and dcf = true must satisfy acf =
false and bdf = false. Symmetrically, if ace = true, every
point f such that abf = true and dcf = true must satisfy
acf = true and bdf = true.

Proof. Since abc = false and abd = false, both c and d
must be on the same clockwise side of ab. Then, dca = false
and dcb = false guarantee that the intersection point is not
between ab or cd. abe = true and dce = true implies that
there will be two cases in terms of the relative position of
e, see Figure 7 and Figure 8 for illustration, but both cases
cannot occur at once since two lines intersect at most once.
That implies if ace = false, then e is on the clockwise side
of ac and bd, then any point f that satisfies abf = true and
dcf = true must be in the same wedge where e is, and vice
versa.

Lemma 2.5. Suppose p1, p2, p3 are three points inside poly-
gon P and they can see each other. Then any pair of points in
△p1p2p3 must see each other.

Proof. Given two points p, q, we know that p does not see q
if and only if pq is not fully inside the polygon. See Figure
9 for the illustration. Suppose p does not see q, then one of
the edges of p1p2, p2p3, p1p3 must not be fully inside of the
polygon, therefore p sees q. We can extend this lemma by

e a

c

b

d

Figure 7: e is to the left, then all other points that are over ab and
below cd also must be to the left

ea

c

b

d

Figure 8: Symmetric picture

finding a triangle form with intersections, and note that the
enclosed polygon must be a triangle, see Figures 10, 11, 12
for the illustration.

p q
p1 p2

p3

Figure 9: p must see q

p1

p2 p3

q

Figure 10: If p1p2q = true, p2p3q = true, p3p1q = true and p1,
p2, p3 see each other, then p1 sees q

Lemma 2.6. Let (pm−1, pm, pm+1, . . . , pn, . . .) is an en-
closed polygon bounded in counterclockwise order. If pmpn

p1 p3

p4 p2

p5
p6

p7

Figure 11: If p1 sees p2, p3 sees p4, and p1p2 intersects p3p4, for
any point p5, p6, p7 counterclockwise to p1p2 and clockwise to p3p4
and p1p3, then p1 must see p5, and p6 must see p7

p1

p2 p3

p4 p5
p7 p8

p6

Figure 12: If p1 sees p2 and p3, and p4 sees p5, and if p4p5 intersects
p1p2 and p1p3, then for any point p6, p7, p8 counterclockwise to
p1p2 and p4p5 and clockwise to p1p3, p1 must see p6, and p7 must
see p8

is fully outside this region and never intersects with any
line segment in this region, then pm−1pmpm+1 = true and
pmpnpm+1 = true.

Proof. See Figure 13 for the illustration. Without loss of gen-
erality, let y(pm) = y(pn) and y(pm−1) > y(pm). Since the
entire region was bounded in counterclockwise order, every
point in (pm, pn) must be above pmpn, otherwise pmpn is
not fully outside of the region, which implies pmpnpm+1 =
true. Since y(pm−1) > y(pm) and the region is bounded in
counterclockwise order, we have pm−1pmpm+1 = true.

pm pn

pm+1

pm−1

Figure 13: pm−1pmpm+1 = true and pmpnpm+1 = true

Lemma 2.7. If (p, q, q1, q2, . . . , qm) forms an enclosed
polygon in counterclockwise order and (q, p, p1, p2, . . . , pn)
forms an enclosed polygon in counterclockwise order, then p
sees q.

Proof. This lemma is an extension of Claim 1. See Figure
14 for the illustration. Without loss of generality, let y(p) =
y(q), and pq cannot be pierced above and below by any points
on the boundary of an enclosed polygon.

The main difference of Lemma 2.7 is that we can determine
two enclosed polygons by the truth value of triples, and Fig-
ures 15, 16 show the extension cases from which we can form
the enclosed polygon.

p

p1

p2

p3
p4

p5

p6
p7

p8
p9

q

q1

q2q3

q4

q5

q6

q7

q8

q9

q10

q11

Figure 14: p must see q

p q

p1 p2

Figure 15: If pp2 and p1q intersects, and if p1 and p2 both on the
clockwise side of pq, then there is an enclosed polygon on the clock-
wise side of pq

p q
p1

p2

pn r

s

pn−1

Figure 16: If (p, p1, p2, . . . , pn) is a sequence of points in counter-
clockwise order, and every point is on the clockwise side of pq, and
if pns intersects qr, then there is an enclosed polygon on the clock-
wise side of pq

3 Procedure
We would like to find the VC-Dimension of point guarding
simple polygon from shattering one guard. Figures 17 and 18
show the realization of shattering one guard and two guards,

which indicate that the VC-Dimension is at least that many.
Starting from a three-guard configuration, we introduce the
counterclockwise/clockwise system for the guard set such
that, for every triple, we want to consider every combination
of the truth value for triples. In other words, given any set of
points in the 2D plane, there is one case that can describe the
placement of those points.

gA

vpA
vp∅

Figure 17: Realization of shattering one guard. G = {gA}, V =
{vp∅, vpA}

gA gB

vpAB
vpA vpB

vp∅

Figure 18: Realization of shattering two guards. G = {gA, gB},
V = {vp∅, vpA, vpB , vpAB}

3.1 Removal of Redundancy
Suppose we have n points on the 2D plane, if we brute force
the truth value in terms of counterclockwise or clockwise for
every triple, then we will have 2(

n
3) cases, and adding one

more point will increase the number of cases exponentially
although most of cases can be immediately rejected by the
Knutt’s axioms without using our structural lemmas, still the
number of cases is unbounded as number of guards increases.

To do that, we define a convex hull decomposition to produce
an ordering for a set of points. Given a set of points that can
be placed anywhere inside a simple polygon, we arbitrarily
find a starting point a where a is any point on the convex hull
of those points. We label the next point as b, where all other
points are counterclockwise to ab and keep labeling until ev-
ery point on the convex hull is labeled. Then we remove from
consideration every point on the convex hull except for a. If
a is the only point left, then we are done, but if there is at
least one point left, we continue to label the points from the
convex hull of the remaining points in counterclockwise or-
der starting from a. See Figures 19 and 20 for the illustration.
We continue until all points have received their spot in the or-
der. This allows us to find all orderings that satisfy Knuth’s

axioms without brute force.

gA

gB
gC

vpABC

vpAC

vpB

vpBC

vpAB

Figure 19: Original Case

c

hb

f
g

d

e

a

Figure 20: Same case after convex hull decomposition

3.2 Algorithms
We first generate every combination of the truth value of
triples after removing the redundancy, for the (n +m) point
system that includes n guards and m distinct viewpoints.
Clearly, if m = 2n, then the VC-Dimension is at least n and
we should consider if (n+ 1) guards can be shattered.

If we did not detect any violation on our lemmas as shown
in Algorithm 1, then we will add a new viewpoint in this or-
dering, consider every assignment of truth value with respect
to this viewpoint, and recompute the decomposition of the
convex hull for the entire set of points to remove redundancy.
Note that a different assignment of the truth value could lead
this viewpoint to a different position, and the label of this
viewpoint and all other points could be different. If we find
any lemma violation for this ordering, then we can terminate
this subcase, and all extensions of this ordering is not feasible.

4 Conclusion
In conclusion, we show structural lemmas to find the VC-
Dimension of point guarding simple polygon problem, re-
lying on the clockwise/counterclockwise system defined by
Knuth and discretizing the set of possible polygons. We also
introduced the dynamic programming approach to find a cer-
tain way to place guards and viewpoints in a simple polygon
efficiently.

Algorithm 1 isFeasibleOrdering(G, V , triples)

for (p, q) ∈ G ∪ V do
if p ∈ G and q ∈ V and p sees q then

visibility[(p, q)] = unknown
else if p ∈ G and q ∈ V and p does not see q then

visibility[(p, q)] = false
else
visibility[(p, q)] = unknown

evaluate Lemma 2.1
evaluate Lemma 2.2
evaluate Lemma 2.3
evaluate Lemma 2.4
evaluate Lemma 2.6
while visibility has not converged do

evaluate Lemma 2.5
evaluate Lemma 2.7

return true

References
[1] Axioms and Hulls. Springer Berlin Heidelberg, 1992.
[2] Hervé Brönnimann and Michael T. Goodrich. Almost

optimal set covers in finite VC-dimension. Discrete &
Computational Geometry, 14(4):463–479, 1995.

Graduate Student Articles

SURVEY OF THE HISTORY OF COMPUTER MALWARE

Benjamin Imwald, Daniel Gehman, Kaitlyn Zeigler, Jeonghwa Lee
Department of Computer Science, Shippensburg University

bi7059@ship.edu, dg5957@ship.edu, kz2818@ship.edu , jlee@ship.edu

ABSTRACT
This paper gives a concise yet comprehensive survey of the
history of computer malware, starting with the early
computing and interconnected devices and continuing
through each decade up to the present, concluding with the
implications for the future. The introduction covers the
early definitions of the first computing systems, malware,
and key developments in computer hardware and
architecture. The 1940s-1960s laid the foundation for
viruses and worms. The 1970s saw multiple proof-of-
concepts, and the ARPANET laid the foundation for the
Internet. The 1980s demonstrated the first logic bomb,
personal computing viruses, worm, denial-of-service
attacks, and ransomware. The 1990s saw more instances of
malware that are built on top of the DoS attack concepts
and demonstrate the first Distributed-Denial-of-Service
attacks. The 2000s malware built on top of the DDoS
attacks as well as displayed the damage worms can do in
the 21st century. The 2010s showed improvements with
ransomware, DDoS attacks, phishing type attacks, large
scale Zero-Day Vulnerabilities and more. Now, in the
present and future, as generative AI continues to advance,
its ability to produce malicious code is evolving and
increasing at rates beyond human ability. Thus, modern
cybersecurity concerns are intensified, and the fight against
malware becomes more complex.

KEY WORDS
Computer viruses, computer worms, computer malware,
malware evolution, malware detection, cybersecurity
threats

1. Introduction

The Analytical Engine, created by Charles Babbage in the
19th Century, is often referred to as the first computer,
which was designed with the end goal of completing any
mathematical computation. This was with help of Ada
Lovelace, of whom is noted as being the first computer
programmer [1]. While the Analytical Engine was limited
to the number of digits it was able to hold, this was a
foundational piece of history to what we know today.
The modern computer was theorized by John von Neumann
in the first half of the 20th century. The von Neumann
architecture, as it is referred to as, consists of four primary

components: a central processing unit (CPU), main
memory, and input and output devices [2].
The history of modern computing, based on the evolution
of hardware, can be categorized into generations. Table I
outlines the generation number, the approximate decade in
which they were used, and the technology employed to
build these computers. The Electronic Numerical Integrator
and Computer (ENIAC), influenced by John von Neumann
and utilizing vacuum tubes, is considered the first electronic
computer [2].

Table I. Evolution of Computer Hardware by Generations [2].
Generation Decade Technology

1 1950s Vacuum Tubes

2 1960s Transistors

3 1970s Integrated Circuits (IC)

4 1980s Very Large Scale ICs (VLSI)

5 2000s Ultra Large Scale ICs (ULSI)

With many human inventions such as gun powder, chemical
agents, cars, etcetera, while their original use may have
been to further science and benefit humans, they have been
shown in the past to cause undue harm to the human race
throughout history. Computers are one such invention,
while originally being created to compute mathematical
calculations, which have shifted to that of inciting harm to
other people.

The term malware (malicious software), first cited in 1990
[3], can be defined as “a class of software designed to cause
harm” [4]. While this term was not coined or recorded until
the 1990s, the concept of malicious programs was seen
demonstrated a couple decades prior and theorized even
earlier in recent history.

2. The 1940s-1960s

The Theory of Self-Reproducing Automata was a book
originally written by John von Neumann in the 1940s until
his death in 1957, and it was later edited and published by
Arthur W. Burks in 1966. This starts out by comparing the
complexity of the human nervous system to the ENIAC and
other computers of the time, giving comparisons such as
that the human nervous system “is roughly a million times

more complicated” [5]. He goes on to propose automata, not
as the stagnant or hardwired processes that were thought of
at the time, but rather a version of them more like cells in
the human nervous system. Furthering this, and getting to
his main takeaway, he proposes automata or cells which
contain information, have ties or connections to the other
cells around them, and have functions that allow them to
self-replicate or self-reproduce [5].

Albeit not defined in this paper, we can see the theoretical
definitions for computer viruses and computer worms in
these cellular descriptions. Both viruses and worms can
carry payloads; however, the primary difference between
the two is that viruses require another program to attach
themselves to, in order to replicate or transfer to other
system, whereas worms can replicate onto other systems on
their own [4]. The term computer virus was officially
coined much later by Frederick Cohen in 1984 [6].

In addition to this, he defined the cells in ways that had
functions in which to deploy their payloads or contents like
viruses. Further, these cells had functions to adapt to their
surroundings, which is similar to the ways viruses or worms
evade detection in systems [5]. This work of the self-
replicating automata became the foundation for malware
which the world would not see come to fruition until
decades after his death.

In the late 1960s, the Advanced Research Projects Agency
(ARPA) under the U.S. Department of Defense (DoD)
created the ARPANET. It was an early network of
computers mainly limited to certain academic and research
organizations who had contracts with the Defense
Department. The ARPANET paved the way for computers
to connect to one another seamlessly and eventually became
a means in which malicious software was spread [7].

Fig 1. Map of “ARPANET access points in the 1970s” [8].

3. The 1970s

The first proof-of-concept (PoC) multimachine programs
were seen in the early 1970s using the ARPANET. In 1971,
Bob Thomas created one of the first PoCs for what that we

know today as a worm. His program, called the “Creeper,”
infected DEC PDP-10 computers that were running the
TENEX operating system, and it moved from computer to
computer simply displaying the message, "I'm the creeper,
catch me if you can!" [9]. This process worked as follows:
“start to print a file, but then stop, find another Tenex, open
a connection, pick itself up and transfer to the other machine
(along with its external state, files, etc.), and then start
running on the new machine” [10]. Following this,
colleagues furthered his work by allowing it to replicate
rather than just traverse the network as well as creating a
variant that identified copies of the Creeper on the network
and log them out [10].

A trojan horse, also referred to as a trojan, is a computer
virus which appears to be doing the desired function while
also carrying out a malicious or unwanted function as well
[4, 11, 12]. In 1975, John Walker created a simple,
innocuous trojan called ANIMAL which was designed to
look like other animal guessing games of the time, but it
also had a subprocess called PERVADE which scanned
directories and copied itself [11].

4. The 1980s

Up until the 1980s, the majority of malware was on the
theoretical or PoC side in a lab type environment, with no
real immediate impact on the surrounding world. This
changed in the 1980s. With the last phase of the cold war,
tensions were at a high. The U.S. created one of the first
instances of a logic bomb [13]. A logic bomb is a type of
malicious code that remains dormant until a specific event
or trigger condition is met. One specific type of this is a
time bomb, which goes off when a specific time is hit [4,
11, 12]. The logic bomb in 1982 was hidden in Canadian
code that was set up by the CIA in its efforts against Siberia,
resulting in the explosion of a soviet gas pipeline that was
able to be seen from space [13]. The reason that these types
of attacks can be so dangerous is the difficulty of systems
and engineers to find and counter them. Logic bombs rely
on specific conditions such as running with a specific
machine or software, time zone, location, or environmental
variables present [12, 14]. This is still a current threat that
systems and people have to account for.

Table II. Elk Cloner Notable Manifestations, subset from [6].
Boot Number Behavior
15th Modified the video mode so that the text on the screen

was inverted.
20th Wrote to the speaker, causing a brief click to be heard.
25th Modified the video mode so that the text on the screen

flashed.
35th Modified the value that represented CONTROL-D so

that DOS commands invoked from Applesoft BASIC
are printed instead of executed.

40th Overwrote the reset vector with an instruction that
pointed to the reset vector so that pressing

CONTROL-RESET caused the machine to enter an
infinite loop.

50th Modified the reset vector so that pressing
CONTROL-RESET caused the Elk Cloner poem to
be displayed.

55th Modified a constant in the diskette calibration code,
causing the sound the disk calibration process made
during the boot process to change.

75th-78th Unconditionally branched to the first instruction that
is executed when a disk booted, leading to four
consecutive reboots.

79th Reset the boot counter.

Further, in 1982 with the Apple II series, otherwise known
as the Apple][, we see the advent of the first Macintosh
malware—the first personal computer virus, specifically
one that had the ability to self-replicate, called the Elk-
Cloner. This was a boot sector virus which is a virus that
infects the boot system and loads itself whenever the
computer is booted [4, 11, 15]. The Elk-Cloner Virus’s
process had 3 main sections: Boot Loading where it loaded
itself from the infected boot disk into memory, Replication
where it infected new disks, and Manifestation where it
displayed signs of the virus. A notable element of the elk-
cloner virus is that it had a boot counter which changed the
action down by the virus every increment or time it booted,
see Table II for a couple of the more notable manifestations
[6].

A transition away from the ARPANET came in 1983. The
problem prior to this was that there was not a standard way
for computers to communicate with one another
internationally, or globally. This change came with the
introduction of Transfer Control Protocol / Internet Protocol
(TCP/IP), which gave us established protocols for
computers to use across the globe. Here we see a shift from
what was formerly the ARPANET to what we know today
as the Internet [7].

In 1986, the Brain Virus was released, much to a similar
light to that of the Elk Cloner Virus. The Brain Virus was
also a boot sector virus and was notable for being the first
virus to affect MS-DOS personal computers and
specifically IBM computers. The Brain Virus was created
with the intent to annoy the people that pirated the author’s
software, and it distributed contact information for users to
pay for the original software. The glaring difference in this
from the Elk Cloner Virus was the number of computers
infected. By 1988, 100,000 floppy disks were infected with
the virus [15].

Also in 1988, the Morris Worm was released into the world.
Notably, this was the first known worm with malicious
intent, and it is sometimes further called the first computer
worm [9,16]. This worm was developed by Robert Tappen
Morris to show the vulnerabilities in the Interconnected
Network (Internet) and connected devices of the time. Note
that this Internet of the time only linked university,

governmental, and military computers around the country.
Morris had 4 primary vulnerabilities that the worm used to
break into computers: a bug in the “SEND MAIL” program,
a bug in the “finger daemon” program, through the “trusted
hosts” feature, and through a brute-force-based password
guessing program. In addition to exploiting these
vulnerabilities, he used methods to avoid detection. The
main method was to check if the program was already
running on the target computer; if the response was “no,”
then the computer become infected, otherwise every
seventh computer became re-infected. This resulted in more
than one instance of the worm running on the target
computer. The underlying problem with the worm was that
the rate at which computers were asked if they were infected
again was so high that computers started running many
instances of the worm to the point that it resulted in Denial-
of-Service (DoS) attacks [9]. This “rendered several
thousand computers unusable” [11].

DoS attacks refer to the flooding of a computer’s resources
and communications to prevent individuals from accessing
the system, data, or network [4]. This was exhibited by the
Morris Worm where processes spawned until their
computers became unusable. DoS attacks largely became a
thing following the creation of the ARPANET and Internet
due to the ease of communication between devices, used for
both good and malicious intent.
The first ransomware attack was in 1989. Ransomware can
be defined as: “Malware that encrypts sensitive files and
demands their return for a ransom” [4]. This first
ransomware attack was distributed via sending 20,000
floppy disks labelled “AIDS Information Introductory
Diskette, Version 2.0” by mail, which were received by
attendees of the AIDS conference [18]. The program
encrypted file names (not files) on the C:\ drive with a
symmetric encryption algorithm, demanding a ransom of
$198 for limited use or $398 for lifetime use of your hard
disk [17, 18]. After the initial attacks, researchers were able
to break the encryption and distribute software to decrypt
the file names and remove the ransomware [17]. This attack
demonstrates the blurred lines between categories of
malware: It was ransomware, as it encrypted data and
demanded a ransom, but it also was a trojan horse since the
program masqueraded as a desired program. Figure 2 shows
one of the messages received by computers infected with
the AIDs Trojan.

Fig 2. AIDs Trojan Message [19].

5. The 1990s

Intrusion Detection Systems (IDS), which were first desired
by the US Government in the 1970s and later theorized by
the NSA’s Dorothy Dennin in the 1980s, are “system[s] that
detects inappropriate or malicious activity on a computer
network” [4, 11]. There are four main goals that these
systems have: “Detect a wide variety of intrusions, detect
intrusions in a timely fashion, present the analysis in a
simple, easy-to-understand format, [and] be accurate” [11].
IDS systems are like a “burglar alarm” for unusual activity
and to have an audit trail or list that can be examined as to
what has happened [20]. This is used in conjunction with
other methods in stopping attacks.

In the early 1990s, a new type of DoS attack was detected,
called a SYN Flood Attack, which takes advantage of how
the TCP/IP network protocol functions. The typical TCP
Handshake is reliant on three steps: a client sends a server a
SYN packet, the server sends back a SYN/ACK packet, and
the client then sends back the ACK packet to allow
communication between the devices [12]. When the server
does not receive the ACK package back, it gets stuck
waiting for it. The key with a SYN Flood attack is that the
client sends the original SYN packet using a spoofed IP
address; then the server sends the SYN/ACK packet to the
spoofed IP but will get no response back. With this attack,
the client sends many requests to the server in sequence to
bog the server down while it waits for packets that it will
never get back, potentially leading to a denial-of-service
[4]. Figure 3 below displays this attack, where the attacker,
potentially with several bot computers, which then makes it
a DDoS Attack, sends spoofed SYN Packets, and the target
sends the spoofed SYN/ACK packets to be left waiting [4].

Fig 3. SYN Flood Attack, modified from [21].

The mid to late 1990s also saw the introduction of ping of
death (POD) attacks, which is a type of DoS attack that
leverages the Internet Control Message Protocol (ICMP).
The attack sends an ICMP packet of greater than or equal to
the size of 64 KB, which is the limit of ICMP packets. The
problem is when systems, which are not designed to deal
with larger packet sizes, hang or crash, resulting in a DoS.
Most modern systems are built to handle this, but certain
ones may be vulnerable to this problem [4].

Distributed Denial-of-Service (DDoS) attacks are a type of
DoS attack where the attacker uses (usually) unwilling
systems to launch a “many-against-one” attack. A many-
against-one attack involves several attacker (i.e., bot)

devices that attack a single target. The way hackers
accumulate the numbers of devices necessary to run these
attacks is through the use of botnets. A botnet is a collection
of (generally) unwilling devices that are controlled by
malicious code. These devices, called bots, can be used for
pooling their computing resources for common goals like
mining cryptocurrency, or, in this case, to send a multitude
of spoofed SYN packets to the target. With a good botnet,
the goal is for the users of the bot computers not to notice
the resource usage, which may lead to detection. Botnets
and DDoS attacks have become prevalent today [4]. Figure
4 gives a diagram for a DDoS attack, specifically one using
multiple DNS Resolvers to attack the victim’s device.

Fig 4. Diagram of a DDoS Attack [22].

DDoS attacks have been shown to cause serious damage for
businesses and organizations since they lead to system
crashes due to the inundation of fake requests, but, more
importantly, they cause down time that customers and
partners, who are left unable to access their resources [4].
The larger DDoS attacks go for large hosting entities rather
than go for small targets, for example the attack against
Google in 2020. This attack lasted 6 months, came from
several Chinese Internet Service Providers (ISPs), spoofed
167 Mpps (millions of packets per second), and hit 180,000
CLDAP, DNS, and SMTP Servers [23]. Ignoring the
downtime resultant from this, the amount of data and power
required for such an attack is extremely large for all parties
involved and further shows the scale of these modern
attacks. DoS and DDoS attacks have grown exponentially
since their inception.

A specific type of DDoS attack, which first emerged near
the end of the 1990s, was called the Email Bomb. This is a
type of DDoS attack sends a target email address or domain
between hundreds of emails per hour and hundreds of
emails per minute with the end goal of rendering the mail
system unusable, unable to receive outside mail. An
example of one of the early attacks was in 1998 when the
Tamil Tigers swamped Sri Lankan embassies with 800
emails per day for two weeks [23].

6. The 2000s

The 2000s started off with rampant fears of potential
problems with the Y2K “bug.” This was due to predictions
that systems would have issues with changing dates from

1999.12.31 to 2000.01.01. This turned out to be a problem
with some systems, but ultimately the vast majority of
systems were unaffected [24].

Following this, on May 4th, the U.S. Army was affected by
the “ILOVEYOU” Virus. The virus was distributed through
an email attachment and spread automatically by users who
opened the attachment, which overloaded the email servers.
This virus ended up infecting 2258 workstations and costing
around $79,200 [24].

Fig 5. Screenshot of ILOVEYOU Virus email and attachment [25].

In 2007, the Zeus Virus, also known as the Zeus crimeware
toolkit, was released. This was a virus that created a botnet,
which was used to execute massive DDoS attacks while
also spying on the bot computers’ keystrokes and activity in
order to gain access to financial systems. This originally
only affected Windows devices, but it spread to various
Android-based OSs too. Devices became infected by either
spam messages or drive-by-downloads, which occur
whenever you visit a website and it automatically
downloads some content (such as another virus) [26, 27].

7. The 2010s

Countries and threat actors have been fighting against
public infrastructure digitally since the cold war. This was
still the case for the 2010 Stuxnet attack, and it is still a
common threat today. The Stuxnet worm was meant to
target Iran’s nuclear facilities, and it reportedly ended up
damaging around 1,000 of their computers, but also it
infected 44,000 other computers in Indonesia, India, Russia,
Cuba, the U.S., and beyond [13, 28]. Stuxnet, as also seen
with other attacks, is a collection of a couple different types
of malware including logic bombs and worms. The Stuxnet
was described as “the most technologically sophisticated
malicious program developed for a targeted attack to date”
[28], and it leaves people with the question of what is at risk
with everything being digitized in our daily lives now [13].

The CryptoLocker Ransomware from 2013 was innovative
in the way it processed payments in addition to its

advancements in its cryptography. It was the first
ransomware that demanded the ransom in Bitcoin (or
another cryptocurrency). This was advantageous to
CryptoLocker since there were no geographical restrictions
with Bitcoin, it was not subject to local laws, it protected
anonymity, and it allowed for the transfer of large sums of
money. Cryptographically, CryptoLocker used 2048-bit
RSA encryption, which was superior to other encryption-
based attacks prior. In all aspects, it was ahead of its time
[29].

Fig 6. Screenshot of a CryptoLocker Ransomware Message [30].

In 2016, The Mirai botnet debuted as not the first Internet
of Things (IoT) botnet, but rather the first high-profile
DDoS threat. IoT devices include but are not limited to the
following: smart doorbells, DVRs, routers, printers,
security cameras, smart ovens and ranges, smart
thermostats, robot vacuums, Wi-Fi enabled cars, and many
more. This botnet was able to spread to so many of these
IoT devices due to them using default passwords and low
security that it had a peak of 600,000 devices and ultimately
a stable population of 200,000 to 300,000 connected
devices. The Mirai botnet launched about 15,000 attacks for
about a year and a half, performing HTTP flood attacks,
UDP flood attacks, SYN flood attacks, DNS flood attacks,
and more [31].

WannaCry was known as the worst cybercrime of 2017.
This was another ransomware attack, affecting more than
250,000 systems and using AES encryption to encrypt each
file with individual keys; then the keys were encrypted with
2048-bit RSA encryption, adding an additional layer than
that of CryptoLocker [29].

Fig 7. Screenshot of a WannaCry Ransomware Message [32].

8. The Present

In the current times of 2020 to 2025, malware-based attacks
and cyber attacks are still extremely prevalent, and it is
important for individuals, businesses, and organizations to
be on the lookout. According to Petrosyan [33], from 2020
to 2023, there were between 5.4 and 6.06 billion malware-
based attacks worldwide. A large number of the largest
cyberattacks today occur with large businesses and cloud
providers like Microsoft, Amazon, Google, Apple, and
Wells Fargo [34]. In addition to this, other large targets are
government and public infrastructure entities, seen in the
following attacks from 2020-2022: Finnish Parliament
attack, Montenegro government attack, Estonian
government attack, Belgian government attack, Lithuanian
energy company attack, the Colonial Pipeline attack, an
attack against Paris’ public hospital system, Argentinian
government attack, the WHO attack, and many more [35].
Public entities and especially public infrastructure have
been the target of government sponsored attacks and
publicly sponsored attacks since before the 1980s which has
not changed in the over 40 years of history there. In addition
to these, a larger number of attacks where hackers leak
sensitive user information stolen or obtained from entities
have occurred in recent years [35, 36]. There exist websites
that list recent and large data breaches and even have tools
to show if you have been affected via your passwords
contained, personal information, and account usernames
[36].

Another important type of malicious attack involves Zero-
Day Vulnerabilities. Zero-Day Vulnerabilities, or Zero-
Days, are vulnerabilities for which there is no previous
knowledge of them [4]. The Common Vulnerabilities and
Exposures (CVE) program is a collection of vulnerabilities
that have been identified in operating systems and
applications “which is maintained by the MITRE
corporation and sponsored by the U.S. Department of
Homeland Security (DHS) and the Cybersecurity and
Infrastructure Security Agency (CISA)” [37]. The list gives
information of the vulnerabilities, scores the severities,
tracks progress, and lists fixes. This is used by many

security personnel, hackers, and companies alike to see the
current and past threats to infrastructure. Hackers find and
exploit Zero-Days as there is no current fix for the
problems, leaving systems open for attack. Typically there
is a rather quick turnaround time between where Zero-Day
vulnerabilities are announced and when they are patched;
otherwise, there can be even worsened or prolonged attack
surfaces. Back in 2021, the Log4j vulnerability, also called
Log4J or Log4Shell, was a vulnerability found in the
Apache Log4j logging library [38]. This was a logging
library used for a wide range of applications including
Adobe, Cisco, AWS, Broadcom, Fortinet, FortiGuard,
IBM, Okta, VMware and many more, and it was noted as
being one of the most widely used logging libraries in the
world [38, 39]. This attack allowed for remote code
execution by hackers, who sent malicious commands
through publicly accessible forms and chatbots, allowing
the communications to hit other services on the target
devices using Log4j [38]. The associated CVE identifier
for this vulnerability is CVE-2021-44228. This
vulnerability was publicly disclosed on December 10, 2021,
and several patches were released within the following
week, and ultimately, the patch 2.17.1 on December 18
fixed the vulnerability in entirety [38]. Even though the
vulnerability was patched with 8 days, Log4j was used in
many applications and software that all had to be patched
themselves, in most instances by the company but also by
the end user of the software to make sure it was up to date.
Some companies took months or even more than a year to
update their applications and devices, leaving vulnerability
to become one of the most commonly used vulnerabilities
by threat actors and attacks still in 2023 [38]. With this slow
process for remediation, one thing that this did improve was
the addition of rules for firewalls and intrusion detection to
be able to block these attacks themselves rather than at the
application level [38].

Social Engineering is the practice of “deceiving another
person so that they reveal confidential information” [4].
This exploits the human trust aspect of computers, has many
facets involved, and is one of the most prevalent forms of
cyber-attacks [4, 34]. Phishing refers to deceiving someone
over email, Vishing refers to the deception over voice calls,
Smishing refers to this practice over Short Message Service
(SMS), also called text [4]. Two other specific phishing
attacks are Spear Phishing where specific groups are
targeted rather than sending the messages to anyone and
everyone, and Whaling refers to Spear Phishing high value
targets like CEOs, CTOs, and other executives or celebrities
[4]. These attacks occur against individuals via
communication messages while trying to impersonate or
befriend the user, and attack individuals at companies,
especially Amazon, Google, and Microsoft [34]. Spoofing
is the technique of impersonating another user or computer;
examples include MAC or IP Address spoofing, website
Uniform Resource Locator (URL) spoofing, and more [4].

Again, the intent with spoofing is to deceive the user to
make them believe that you are someone or some company
that they can trust in order to gain information like
demographics, login credentials, social security numbers,
security questions, and more. These attacks can be
combined with other attacks including installing malware
such as keyloggers (which harvest user credentials), botnet
software, and more. Another technique used in this is the
Virus Hoax, which attempts to deceive the user into doing
something like giving user credentials and such with the
threat that there is a virus on their computer [4]. Another
specific type of phishing is pharming, this is where threat
hackers use a fake website to steal credentials. They use a
culmination of steps to make these websites look at real as
possibly including typo squatting, domain spoofing,
previously listed techniques and more with the goal to
obtain real user credentials from users [4]. Figure 8 shows
a simple example, specifically depicting two common signs
that a website may be fake: the website is unsecured and
there are typos in the URL. These are not always the case,
but signs like these are good things to watch out for in cases
like these. These phishing based social engineering threats
can be found across many website, forms, and functions.

Fig 8. Example of a fake login page [40].

9. The Future of Malware and Cybersecurity

Innovation in computer penetration likewise breeds
innovation in the field of computer security. Without the
cat-and-mouse game from hackers and security
professionals, there would be no need for security to
improve for computers. Different computer attacks
showcase different vulnerabilities and lead to
improvements in their respective attack spheres. Take, for
example, the Morris Worm back in the 1980s, which led to
the creation of a government entity called the Computer
Emergency Response Team (CERT) to deal with emerging
threats, led to the creation of the firewall and more [41].
With the improvements in security that are of benefit, there
are also conversely improvements to malware or
cryptology. Another example of this was the AIDS Trojan
in 1989. Researchers at the time were examining the

malware in effects to both find how to decrypt users’ data,
but in doing so they also discovered the flaws that ended
up allowing them to decrypt this so easily. With this
knowledge, they were able to come up with a proof-of-
concept for improving the encryption algorithm, using
public key cryptography rather than its private key
cryptography; this improvement led to advancements made
to later forms of ransomware [17].

A modern and ongoing example is the involvement of
artificial intelligence (AI) in both the proliferation of
malware as well as its detection. The evolution of
generative AI is heightening existing cybersecurity threats
and creating new challenges in the fight against malware.
Phishing, for example, can become more easily targeted to
a specific victim when generated by AI. Additionally, AI
is able to produce malicious code at rates much faster than
human capabilities [42]. In response, developers have
made strides to use AI for preventative detection. GPTZero
and similar software have been created to recognize AI-
generated material while other generative AI programs
detect and report suspicious patterns that are common of
malware and phishing [42]. As O'Neill notes, AI is
reshaping cybersecurity by enhancing both attacks and
defenses, leading to a new era where offense and defense
are increasingly automated. This forces cybersecurity
professionals to adapt to both more complex threats and the
rising role of AI in defense [43].

Another example of technology that has been up and
coming for more than a quarter of a century is quantum
computing, which is expected to have a large impact on
cyber security in the coming years. Quantum computing
utilizes quantum mechanics as opposed to the traditional
way computers have worked [44]. The excitement
regarding quantum computing in the modern age is its
improved efficiency and speed compared to traditional
computing, yet the technology is not developed to make
full use of it [44, 45]. Shor’s Quantum Factoring
Algorithm, which is meant to efficiently factor large
integers, in theory threatens our traditional encryption
methods but is unable to beat our current forms of
encryption in a reasonable amount of time and resources
[46, 47]. Beyond cracking, quantum computing is also
being researched for use in creating more secure forms of
encryption as well as being used in tandem with machine
learning against malware analysis for its power and
efficiency [44, 47].

This strive toward innovation and improvement in security
is a perpetual process with the constant improvement of
technology. For example, the ever-growing and rapidly
changing field of machine learning has provided several
modern solutions for detecting malware. Decision trees,
Support Vector Machines, and similar algorithms have

been trained to reliably classify and distinguish malware
from “benign” data [48].

10. Conclusion

Throughout the history of computing and malware, there
have been some clear patterns that provide valuable
insights and lessons for the future.

The original types of malwares were conceived in
theoretical terms, which later transitioned into proof-of-
concept (PoC) demonstrations in labs, evolving into
harmless pranks or educational tools. Over time, these
early forms of malware grew into the complex cyberattacks
and the ongoing cyber warfare we see today. This shift has
contributed to the rise of a multi-billion-dollar industry
focused on computer security and penetration testing [49].
Most attacks historically have started with smaller PoC
attacks which were later taken and improved on to increase
their attack complexity, payload, and connections [50].

There has been a shift over the years in the types of people
who have created malware, and those who partake in
cyber-attacks. Some categories for attacks can be defined:
hackers (although commonly used for a nefarious person)
can be defined as someone hired by corporations or
governments for the good of benefiting their security
landscape, crackers can be defined as people on their own
or with a coalition of people for breaking into systems for
nefarious purposes, script kiddies are defined as those
without the computer knowledge to write attacks but rather
just use publicly available scripts from the Internet [4]. As
with any of these, there can be levels or a range of skillset
that people have, but the increase of the spread of
knowledge on the Internet has led to the ease of people
getting into the field with little to no know-how prior.

Appendix A, titled “The Impact Table,” provides a detailed
overview of the evolution of the malware discussed in this
paper, including information of the hardware and operating
system, significance, and the damage caused by each type
of malware.

References:

[1] W. Isaacson, The Innovators. New York, NY: Simon

& Schuster, 2014.
[2] W. Stallings, Computer Organization and

Architecture, 11th ed. Hoboken, NJ: Pearson, 2020
[3] “Malware, N. Meanings, etymology and more,”

Oxford University Press,
https://www.oed.com/dictionary/malware_n
(accessed Mar. 5, 2025).

[4] W. A. Conklin, G. B. White, C. Cothren, R. L. Davis,
and D. Williams, Principles of computer security:

comptia security+ and beyond, (Exam SY0-601), 6th
ed. (New York, New York: McGraw-Hill, 2022).

[5] J. V. Neumann and A. W. Burks, Theory of Self-
Reproducing Automata (Champaign, IL: University of
Illinois Press, 1966).

[6] S. Levy and J. R. Crandall, The program with a
personality: analysis of elk cloner, the first personal
computer virus, Arxiv 1(1), 2021.
https://arxiv.org/abs/20

[7] A Brief History of the Internet, University System of
Georgia,
https://www.usg.edu/galileo/skills/unit07/internet07_
02.phtml#:~:text=This%20allowed%20different%20k
inds%20of,the%20birth%20of%20the%20Internet
(accessed Mar. 5, 2025).

[8] “ARPANET,” Wikipedia,
https://en.wikipedia.org/wiki/ARPANET (accessed
Mar. 5, 2025.

[9] F. Syed, Understanding worms, their behavior and
containing them,
https://www.cse.wustl.edu/~jain/cse571-
09/ftp/worms/, 2009.

[10] J. F. Shoch and J. A. Hupp, The ‘worm’ programs—
early experience with a distributed computation,”
Communications of the ACM, 25(3), 1982, 172–180.
doi:10.1145/358453.358455

[11] M. Bishop, Computer Security: Art and Science
(Upper Saddle River, NJ: Pearson Education, 2003)

[12] W. Stalling, L.Brown, Computer security: principles
and practice (Hoboken, New Jersey: Pearson
Education, 2018).

[13] S. J. Shackelford and R. B. Andres, State
responsibility for cyber attacks: competing standards
for a growing problem, Conference on Cyber Conflict,
Cambridge, UK, 2010, 197–208.

[14] M. Botacin and A. Grégio, Malware multiverse: From
Automatic Logic Bomb Identification to automatic
patching and tracing, Arxiv 1(1), 2021,
https://arxiv.org/abs/2109.06127.

[15] C. Miles, Early history of the computer virus,
University of Louisiana at Lafayette,
http://craigmil.es/pubs/History_of_Computer_Virus.p
df (accessed March 6, 2025).

[16] U.S. v. Morris, 928 F.2d 504 (2d Cir. 1991).
[17] H. Oz, A. Aris, A. Levi, and A. S. Uluagac, A survey

on ransomware: evolution, taxonomy, and defense
solutions, ACM Computing Surveys 54(11), 2022, 1–
37, 2022.

[18] M. Alexander, “Trojan horse sneaks in with AIDS
program,” Computerworld, p. 4, Dec. 18, 1989.

[19] Gdatasoftware,
https://www.gdatasoftware.com/fileadmin/web/gener
al/images/blog/2019/12_2019/Eddy_1.png (accessed
Mar. 5, 2025).

[20] D. E. Denning, "An intrusion-detection model," IEEE
Transactions on Software Engineering, 13(2), 1987,
222-232.

[21] How to prevent a SYN flood attack. PurpleSec,
https://purplesec.us/learn/prevent-syn-flood-attack/
(accessed Mar. 5, 2025).

[22] C. Houle and R. Pandey, A layered approach to
defending against list-linking email bombs APWG
Symposium on Electronic Crime Research (eCrime),
San Diego, CA, 2018, 1-9.

[23] What is a DDoS attack?, Cloudflare,
https://www.cloudflare.com/learning/ddos/what-is-a-
ddos-attack/ (accessed Mar. 5, 2025).

[24] J. Burns, ‘Iloveyou’ virus lessons learned report,
Defense Technical Information Center, Fort
McPherson, GA, 2003.

[25] “ILOVEYOU,” Wikipedia,
https://en.wikipedia.org/wiki/ILOVEYOU (accessed
Mar. 5, 2025).

[26] H. Binsalleeh et al., On the Analysis of the Zeus
Botnet Crimeware Toolkit, Eighth Annual
International Conference on Privacy, Security and
Trust, 2010, 31-38. doi:10.1109/pst16766.2010

[27] Zeus virus, Kaspersky Lab,
https://usa.kaspersky.com/resource-
center/threats/zeus-virus (accessed Mar. 5, 2025).

[28] A. Matrosov, E. Rodionov, D. Harley, and J. Malcho,
“Stuxnet under the Microscope,” ESET,
https://icscsi.org/library/Documents/Cyber_Events/E
SET%20-
%20Stuxnet%20Under%20the%20Microscope%20v
1.31.pdf (accessed Mar. 5, 2025).

[29] H. Oz, A. Aris, A. Levi, and A. S. Uluagac, A survey
on ransomware: evolution, taxonomy, and defense
solutions, ACM Computing Surveys 54(11), 2022, 1–
37. doi:10.1145/3514229

[30] M. Buckbee, CryptoLocker: Everything You Need to
Know, Varonis,
https://www.varonis.com/blog/cryptolocker (accessed
Mar. 5, 2025).

[31] M. Antonakakis et al., Understanding the Mirai
Botnet, Proceedings of the 26th USENIX Conference
on Security Symposium, Berkeley, CA, 2017, 1092–
1110.

[32] “US Publicly Blames North Korea for WannaCry
Ransomware Attack,” MarketWatch, Dec. 19, 2017.
[Online]. Available:
https://www.marketwatch.com/story/us-publicly-
blames-north-korea-for-wannacry-ransomware-
attack-2017-12-18 (accessed Mar. 6, 2025).

[33] A. Petrosyan, Number of malware attacks per year
2023, Statista,
https://www.statista.com/statistics/873097/malware-
attacks-per-year-worldwide/ (accessed Mar. 21,
2024).

[34] M. St. John, Cybersecurity stats: Facts and figures you
should know, Forbes,
https://www.forbes.com/advisor/education/it-and-
tech/cybersecurity-statistics/ (accessed Mar. 5, 2025.

[35] Recent cyber attacks, Fortinet,
https://www.fortinet.com/resources/cyberglossary/rec
ent-cyber-attacks (accessed Mar. 5, 2025).

[36] T. Hunt, Have I been pwned: Check if your email has
been compromised in a data breach,
HaveIBeenPwned, https://haveibeenpwned.com/
(accessed Jun. 3, 2024).

[37] CVEs and the NVD Process, National Institute of
Standards and Technology,
https://nvd.nist.gov/general/cve-
process#:~:text=Founded%20in%201999%2C%20th
e%20CVE,Infrastructure%20Security%20Agency%2
0(CISA). (accessed March 21, 2025).

[38] What is the LOG4J vulnerability?, IBM,
https://www.ibm.com/topics/log4j (accessed March 5,
2025).

[39] O. Nath, Log4j Flaw: Top 10 Affected Vendors and
Best Solutions to Mitigate Exploitations, Spiceworks,
https://www.spiceworks.com/it-
security/vulnerability-management/articles/log4j-
flaw-top-10-affected-vendors-and-best-solutions-to-
mitigate-exploitations/ (accessed March 5, 2025).

[40] D. Bodnar, What is pharming and how to protect
against it, Avast, https://www.avast.com/c-pharming
(accessed March 5, 2025).

[41] H. Orman, The Morris Worm: A Fifteen-Year
Perspective, IEEE Security & Privacy, 1(5), 2003, 35–
43. doi:10.1109/MSECP.2003.1236233

[42] T. Munson, V. Tao, & J.J. Mohr, The Double-Edged
Sword of Generative AI, CPA Journal, 94(7/8), 2024,
35-40

[43] M. O'Neil, AI in Cybersecurity: The Future of Attack
and Defense. Security Tech Review, 15(3), 22-34.,
2021

[44] F. Mercaldo, G. Ciaramella, G. Iadarola, M. Storto, F.
Martinelli, & A. Santone, Towards explainable
quantum machine learning for mobile malware
detection and classification, Applied Sciences, 12(23),
2022, 12025. https://doi.org/10.3390/app122312025.

[45] U. Ahmed, T. Sipola, & J. Hautamäki, Cyber
protection applications of quantum computing: A
review, European Conference on Cyber Warfare and
Security, 23(1), 2024, 10–17.
http://dx.doi.org/10.34190/eccws.23.1.2182.

[46] D. Willsch, M. Willsch, F. Jin, H. De Raedt, & K.
Michielsen, Large-scale simulation of Shor’s quantum
factoring algorithm, Mathematics, 11(19), 2023, 4222.
https://doi.org/10.3390/math11194222.

[47] A. Riani, “The Quantum Cybersecurity Revolution:
Arguably the Biggest Startup Opportunity in 2025,”
forbes.com. [Online]. Available:
https://www.forbes.com/sites/abdoriani/2024/12/30/t

https://doi.org/10.3390/app122312025

he-quantum-cybersecurity-revolution-arguably-the-
biggest-startup-opportunity-in-2025/ (accessed Mar.
6, 2025).

[48] J. Ferdous, R. Islam, A. Mahboubi, & M.Z. Islam, A
Survey on ML Techniques for Multi-Platform
Malware Detection: Securing PC, Mobile Devices,
IoT, and Cloud Environments, Sensors, 25(4), 2025,
1153

[49] P.W. Singer & A. Friedman, Cybersecurity and
Cyberwar: What Everyone Needs to Know. New
York, NY: Oxford University Press, 2014.

[50] M.L. Cohn, The Malware Handbook. 2020

[51] “A brief history of computer viruses & what the future
holds,” Kaspersky Lab,
https://usa.kaspersky.com/resource-center/threats/a-
brief-history-of-computer-viruses-and-what-the-
future-holds (accessed Mar. 5, 2025).

[52] U.S. leads multi-national action against ‘Gameover
zeus’ botnet and ‘cryptolocker’ ransomware, charges
botnet administrator,” United States Department of
Justice, https://www.justice.gov/opa/pr/us-leads-
multi-national-action-against-gameover-zeus-botnet-
and-cryptolocker-ransomware (accessed March 5,
2025).

Appendix A: The Impact Table

Year Name Hardware / OS Significance Damage / Cost
1971 Creeper Worm DEC PDP-10 / TENEX OS

[9,10]
First PoC worm type program [9,10] No damage to the infected system, negligible

cost
1975 Animal Trojan UNIVAC 1108 [6] First trojan horse [11] Potential data loss or system malfunction,

expensive for the organization affected
1982 Elk Cloner Apple][Plus / 6502 [6] One of first boot sector viruses,

affecting the Macintosh [6]
No significant damage to systems, operational
costs for users and downtime

1986 Brain Virus IBM / MS-DOS [15] First boot sector virus to affect MS-
DOS [15]

Greater than 100,000 floppy disks [15]

1988 Morris Worm DEC VAX and SUN /
BSD UNIX OS [9]

First worm with malicious intent
[9,16]

“Over 10 million USD” [9], and “rendered
several thousand computers unusable” [11].

1989 AIDs Trojan Windows [29] First Ransomware attack 20,000 Floppy Disks
2000 ILOVEYOU Virus Windows, Microsoft

Outlook [9]
First worm to inflict billions of USD
worth of damage [9]

“5.5 to 10 billion USD [9].”

2007 Zeus Botnet Windows [26,27] Notable for its many variants and
scale of infections.

“Infected over 3.6 million computers in the US
[26].”

2010 Stuxnet Windows [51] Used to attack Iran’s nuclear facilities
but ended up infecting many more
computers [51].

Damaged around 1,000 Iranian Centrifuges but
affected more than 44,000 computers worldwide
[51].

2013 CryptoLocker Windows [29] First ransomware to use bitcoin for
payment [29]

More than 234,000 computers infected [52]

2016 Mirai Botnet IoT Devices Notable IoT-based botnet for its size
and length of use [31]

Peak of ~ 600,000 devices infected [31]

2017 WannaCry Windows [29] Scale and using both AES and RSA in
sequence for encryption [29]

250,000 Computers / 150 Countries [29]

INTERGENERATIONAL CLASSIFICATION OF REDDIT COMMENTS BASED ON SLANG
AND EMOJI USAGE

James Dracup, Dr. Richard Burns
West Chester University

jd926102@wcupa.edu, rburns@wcupa.edu

ABSTRACT
The rapid evolution of language, driven by technological
advancements, has created notable cultural gaps between
generations, particularly in how they communicate. This
gap is most apparent in the growing use of slang and
emojis among younger generations. This study aims to
explore whether Reddit comments can be classified by
generation based on the usage of slang and emojis, the
frequency of their use across generations, and how such
features might influence the meaning of traditional
language. Using Reddit’s API, we collected comments
from four generational subreddits and applied various
machine learning models, such as Naïve Bayes, Neural
Networks, and Decision Trees to identify the most
effective classification method. We compared both
standard models and improved models that focus on
selective features—specifically slang and emojis—using
both imbalanced and balanced datasets. Through this
research, we seek to determine if machine learning
models can effectively classify social media comments by
generation based on certain linguistic features. Our results
show that Neural Network models are the ideal candidates
for further work on generational classification, going from
an accuracy of 77% with just balanced, to 91% with
balanced and selective features applied.

KEY WORDS
Natural Language Processing (NLP), Machine Learning
(ML), Generational classification, slang, emojis, social media

1. Introduction

With the rise of the Internet came the eventual rapid
evolution of society. Through social media platforms, we
can express our thoughts, share our beliefs, and even
make friends all with the help of computers allowing us to
communicate with each other [1]. With these platforms
came their unique groups, which share what they like, talk
about events, and even create the newest trends and
linguistic framework of the current age for the cultures of
one’s society. This creates challenges, for example, older
generations critiquing the younger ones, and the younger
ones blaming and not understanding the worldview and
knowledge their elders have.

One common example is the usage of such emojis such as
the skull emoji, ����� [2]. This to older generations can be
perceived as a threat, or actual death of someone, while

for younger generations, the skull emoji is a form of
expressing one’s extreme form of laughter about what they
have heard or seen [3]. This is one example of such a standard
form of communication changing with the younger
generations. In the form of slang, some common examples
would be ‘Ohio’ which for older generations would mean the
state of Ohio in the United States, while for younger
generations it would mean weird, bad, or cringe. This brings a
lot of nuances since slang and emojis have potentially
different meanings. Our research focuses on the ability to
understand relationships and differences between slang and
emoji usage in intergeneration text. In this paper, we aim to
classify Reddit comments to which generation wrote that
comment. This is useful as it can bridge the gap of
understanding between different eras.

We posit that Reddit comments can be classified by generation
based on word usage, as well as the presence of slang and
emojis. Using Reddit’s API, we gathered data from four
generational subreddits which were: r/BabyBoomers,
r/GenX, r/Millennials, and r/GenZ, and applied
various models to these datasets. Such models were: Naïve
Bayes, Neural Networks, and Decision Trees to identify the
most effective classification method. Both a Standard model
and an Improved model (with slang and emoji features) will
be tested on both imbalanced and balanced datasets. With
these models, we seek to determine if we can classify
comments from Reddit by generation.

2. Background

Natural Language Processing is a field of artificial intelligence
and computer science that works on creating machines to
understand, interpret, and generate human language. It
involves the interaction between computers and human
(natural) languages, and it uses techniques from machine
learning, linguistics, and statistics to process and analyze large
amounts of natural language data.

To do this we will gather data from the four different
generation subreddits, r/BabyBoomers, r/GenX,
r/Millennials, and r/GenZ. Preprocessing will
check for emojis and the presence of slang or not. This is a
challenge that many are focusing on since slang is always
changing and has different meanings as the decades go by [4].

The paper, ‘Slang or Not’ [4], focuses on introducing a binary
classification system designed to identify if a sentence
contains slang or not. They conduct investigations of several

mailto:jd926102@wcupa.edu
mailto:RBurns@wcupa.edu

machine learning models such as Random Forest (RF),
logistic regression (LR), Support Vector Machines
(SVM), Adaptive Boosting, and Category Boosting with
all trained using default parameters with TF-IDF as one
feature used [4]. The paper also introduced a new corpus
with annotated slang and non-lang labels, for the binary
classification, and used traditional machine learning
models (ML), deep learning models (DL), fine-tuning of
language models (LMs), and large language models
(LLMs) [4]. The dataset they tried to use is not publicly
accessible, comes with notable limitations, and does not
differentiate words that have slang and non-slang
meanings in the sentences. For their examples, they used
sources like the Clean Corpus of Historical American
English (CCOHA) for its detailed documentation and
utilized data from X (Twitter) for a rich current source of
contemporary slang and informal language [4].

(Lynch, Conor, et al) paper [8], focused on their sentiment
analysis classifications of text from X (Twitter) with work
on neural network—based frameworks like TensorFlow
and Keras as benchmarks for bespoke sentiment analysis
algorithms. Their dataset was four publicly available and
manually annotated sets. They also mention using
Bernoulli Naïve Bayes, Decision Tree, Gaussian Naïve
Bayes, Logistic Regression, Linear Support Vector
Classification, k-nearest neighbors (KNN), Passive-
Aggressive, Perceptron, Random Forest and SVC
algorithms using scikit-learn [8]. Convolutional Neural
Networks (CNN), Long-Short-Term-Memory (LSTM)
and Gated Recurrent Unit (GRU) models were
implemented using Keras [8].

Compared to (Slang or Not) and (Lynch, Conor, et al) my
work differs and contributes to the field of text
classification in NLP for generational classification based
on select features (Slang and Emojis) in a few ways:

1. For (Slang or Not) they use sites like Urban-

Dictionary [12] and Online Slang Dictionary [4]
while I use the built-in Unix standard words file to
cross-check all words that aren’t standard by our
operating system’s dictionary.

2. Instead of X (Twitter) my focus is on Reddit for the
collected dataset as it’s easy to gather said data if you
are limited on X’s restricted access to scrapping tons
of comments. I do collect four datasets as well and
have each comment labeled by their respective
generation subreddit they were scrapped from.

3. Though I use models that are talked about in their

papers I’m more focused on multiclass generational
classification instead of predicting binary
classification results [4] if slang exists or not in a
sentence, or if a text is positive or negative [8].

Overall, while I am using similar models such as Naïve
Bayes, Neural Networks, and Decision Trees, my focus is
using select features to help build a model that can

classify comments made publicly online into a generation
based on linguistic pattern usage by users. In the next section,
we will present and analyze our scraped dataset.

3. Dataset

This section discusses our dataset collection, preparation, and
analysis. The creation of the complete dataset used in this
research is split into three phases: (1) the scraping of four
Reddit generations datasets: BabyBoomer, GenX, Millennial,
GenZ, (2) the preprocessing and creation of two forms
(Standard and Selective Features) for Multinomial Naïve
Bayes, Neural Network, and Decision Tree models, and (3)
the evaluation of each models’ classification capabilities.

3.1 Reddit Generational Dataset Creation

The four generations datasets (Baby Boomer, Gen X,
Millennial, and Gen Z) were sourced from four separate
subreddits. We assume that the poster or commenter in a
specific subreddit is made by an individual of that generation.
The sources for each one are r/BabyBoomers, r/GenX,
r/Millennials, and r/GenZ.

3.1.1 Data Collection

We scraped data from the four locations using the Reddit API
[5], which allowed us to gather from the top and new post
options that appear on each of the subreddits. Using basic
Python scripts, we traversed the subreddits and scraped all the
comments that existed in each post from the subreddits. This
resulted in us having four separate structured JSON files of:
the time, the title of the post, and the comments made under
each post. We also accounted for instances when a comment
was deleted. We appended into a comments list if a comment
had a valid author or ignored it if the comment was deleted
since the commenter was removed.

We set up our scripts on a department server with crontab
executions that would vary times in the day to activate
scrapping comments from Reddit to avoid its rate limit of 100
queries per minute. The scraping focused on gathering all
current posts through November 21 and December 11 last
year, 2024. Table 1 shows the distribution of our dataset.

Labels Comments Words Emojis Slang
Words

Baby
Boomer 513 29,620 28 4,180

Gen X 261,926 7,262,445 22,564 87,419
Millennial 370,488 13,067,792 27,062 103,804

Gen Z 326,434 10,685,833 26,451 94,233
Total: 959,361 31,045,690 76,105 289,636

Table 1. Total amount of comments, words, emojis, and slang in
data before preparing it for use.

The size of Baby Boomers is very small in numbers compared
to the other three generations. This is due to many of the Baby

Boomer generation not being on the platform.

3.1.2 Dataset Preparation

In this section, we will describe the preprocessing steps
that were conducted on the dataset. Figure 1 shows a brief
overview of the steps taken to acquire and prepare the
data.

Figure 1. Overview of Data Preparation

We scraped the comments, storing them in separate JSON
files containing all comments in their separate posts, that
they were gathered. Then we flattened the datasets into
one complete comment section. This is done for all four
generation datasets. Once flattened we preprocess by
tokenizing, filtering out stop words, and eventually
labeling each comment with their respective generation
name. After that, the datasets were ready for analysis and
eventual use in our ML models. Each sentence is a
concatenation of words, which can be viewed as features.
Stop words, were filtered out using Natural Language
Tool Kit (NLTK) [6]. Table 2 shows the total comments
that each dataset contains for each generation following
the conclusion of the preprocessing.

Labels Comments Words Emojis Slang
Words

Baby
Boomer 508 15,208 28 300

Gen X 261,128 3,877,192 22,564 46,546
Millennial 369,648 6,811,040 27,062 61,564

Gen Z 325,421 5,696,290 26,451 54,511
Total: 956,705 16,399,730 76,105 162,921

Table 2. Total amount of comments, words, emojis, and
slang in data after preparing it for use.

Lastly, we divide the complete dataset into an 80/20 split
ratio for later training and testing sets respectively.

3.2 Dataset Analysis

We are also interested in understanding the prevalence of
slang in our dataset. Our approach checks if words are slang or
not by using the built-in dictionary called the Unix standard
words file. This iterates through each word to check if it exists
or not in the standard words file. Those that do not appear are
stored in separate JSON files of their respective generation
and then compared with each other to find unique slang words
that only appear in one generation instead of all. The result is a
single file that contains a list of unique slang words that do not
appear in the other three generations. Table 3 shows a sample
captured from two generation lists of what words were
detected as possible slang in our slang word-checking script.

Generation Snippets Slang

Baby Boomer
[concealers, ceta,

sufferagettes, undereye,
admundane, subte, …]

Gen X [entiry, aleast, ravy, rockso,
…]

Table 3. A sample captured unique words considered slang from
our method.

The other feature of our focus is emojis which have universal
Unicode used across all platforms and systems. We ignore the
top layer of the Unicode that gives emojis different
appearances depending on the platform (e.g. The waffle emoji

������������� on iPhone vs. Android). Initially, we have a snippet
of features based on frequency per generation as shown below
in Table 4.

Emoji Frequencies and Most Common Generation:
👍👍 - Generation Boomer: 1 times
👍👍 - Generation GenX: 529 times

👍👍 - Generation Millennial: 246 times
👍👍 - Generation GenZ: 872 times
🏻🏻 - Generation Boomer: 2 times
🏻🏻 - Generation GenX: 520 times

🏻🏻 - Generation Millennial: 677 times
🏻🏻 - Generation GenZ: 404 times
🥑🥑 - Generation Boomer: 1 times
🥑🥑 - Generation GenX: 4 times

🥑🥑 - Generation Millennial: 9 times
🥑🥑 - Generation GenZ: 1 times
🙄🙄 - Generation Boomer: 1 times
🙄🙄 - Generation GenX: 328 times

🙄🙄 - Generation Millennial: 434 times
🙄🙄 - Generation GenZ: 323 times.

Table 4. Emoji frequency per generation snippet

While all generations use emojis in Table 4, they are not with
the same frequency as other generations. To check how
frequently each generation uses an emoji over others in our
total dataset we have a counter as shown in Table 4 above, for
each emoji for when a Unicode is matched in the text. Figures
2 – 4 show an ordering of emojis, by least used to most used
emoji by generation.

Boomer:
GenX: ���� ������ � ������ ����� ����� ❣ �������� ����� �������� ������ ��� �
�������� ������� �� �� ♥ ������ ����� ��������� ��������� �������� ������ ����� ������� ✔ �
�������� ���� ������������� ���� ❤ ������� �� ��� ������� �������� ������ ☺ �� �� �����������������������
���� �� ���������� �������������������� � ������� ��������� ����� ������ ������������� �������������� ����� ���� ����� �����
���������� ���������� ����� ��� ������ ✌ ������ ������ �������� ����������������������� �������������������������� ��������� �������������� �� �����
��� �� ������� �������� �������� ����������������������� ����������� � �� ����� � ������������� ���� ⚰ ���������
�������������� �� �������� ��������� 🏕🏕 ������ ����� ����� ������������������������������������� ��� 🗑🗑 ������� ���������� ��� �����
�� � ���� ��������� 🗞🗞 ������������������������ ���� ������ ��������� ��������� �������������������������������� ��������� ������������� ��� ♩ ♪
♫ 🕸🕸 ������ 🏵🏵 ��������������������� ����������� ✈ ������������� �� ������������ �������� ����� 🛍🛍 �� ������ �����
����� � ����������� �� ������������� ❛ ������ ������ ������ ������ ��� ���������� ����������������� ��� ����
🏎🏎 ���������� � ����� ��������� ⚕ ������ ������������� ����� ���������� ������������������������ ����������� 🍽🍽 ������� ���������������
����������� �������� ���� ������������ �������������������������������������� ��� ��� �������������������������������� ⚘ �������� ✏ ���������� ��� ��������� �����
��� ����������������������� ������������������������������ ���������������������� ���� ����������������� ��� ������������ ������ ���� ���� 🌡🌡 �� ���� ��
��������� ������������ �������� ����� �� �� ������������ �������� �� 🕹🕹 ����������� ���������������������� ������������� ���� �����
����� ���� ������� � ��� ���������������� �������� ����� ���������� ����� ����� ✖ ������� ������ ���
������ ��� 🏍🏍 ����� ���� �� ����� ❄ ����������� �� ����� ����� 🖌🖌 🖼🖼
Figure 2. The frequency amount of emojis usage used by
BabyBoomers, followed by GenX, the third largest.

Millennial: � 🥑🥑 🙄🙄 � 🤷🤷 ♀ 😂😂 😕😕 😖😖 🤦🤦 🤣🤣 🧙🧙 ♂
😑😑 🌎🌎 🤔🤔 👌👌 😒😒 💚💚 😅😅 🍳🍳 🤌🤌 😌😌 🤤🤤 🙌🙌 🥺🥺 😬😬
😫😫 🖤🖤 ✨ 😵😵 💫💫 � 💖💖 🙁🙁 😪😪 😞😞 🥲🥲 👋👋 🥹🥹 🤙🤙 ✂
🙃🙃 😣😣 💞💞 🧿🧿 😩😩 🦗🦗 🤞🤞 😮😮 💨💨 😇😇 🔘🔘 🙈🙈 ♾ 🌟🌟 ✋
😿😿 🔓🔓 🥴🥴 🧐🧐 👵👵 🐒🐒 🤏🤏 💡💡 😴😴 💃💃 🐕🐕 🐈🐈 🙊🙊 🐉🐉
🙇🙇 ♬ 🕷🕷 💤💤 📚📚 🏃🏃 💁💁 🦜🦜 🐇🐇 😺😺 👆👆 😓😓 😠😠 🌫🌫 🌠🌠
🌵🌵 🧓🧓 🌷🌷 🍂🍂 🏡🏡 🤎🤎 🗡🗡 🍌🍌 🐍🐍 🎃🎃 🎇🎇 🏴🏴 🐱🐱 💘💘 🦳🦳
🎺🎺 👖👖 🚨🚨 🥪🥪 🐠🐠 🐬🐬 🐢🐢 🐐🐐 🌰🌰 🦄🦄 🎻🎻 🤥🤥 🚁🚁 🦴🦴
🥔🥔 🏠🏠 💉💉 🐡🐡 🌲🌲 🤲🤲 🍗🍗 🛑🛑 🤒🤒 🤴🤴 🎨🎨 🦁🦁 🧒🧒 🦖🦖
🐦🐦 🆘🆘 🛵🛵 🐔🐔 🐫🐫 🕯🕯 🧖🧖 ➕ 📟📟 ⚫ ✓ 🎮🎮 🥣🥣 🥫🥫 🦕🦕
🔻🔻 🍨🍨 🍐🍐 🛻🛻 📁📁 🍅🍅 🌶🌶 🦡🦡 🦓🦓 💄💄 🚲🚲 🚜🚜 🚂🚂 🚪🚪 💴💴
💾💾 🦚🦚 📖📖 🎷🎷 🕶🕶 📢📢 📣📣 🦵🦵 🦊🦊 🍜🍜 🐞🐞 🎪🎪 🥐🥐 🤳🤳 🚩🚩
🏁🏁 🧹🧹 🏖🏖 🛒🛒 💊💊 📡📡 🙉🙉 🚑🚑 🏺🏺 🚢🚢 🎓🎓 🧦🧦 🦞🦞 🕰🕰 🛌🛌
📕📕 🧞🧞 🏧🏧 🥾🥾 🐋🐋 ⛄ 🎒🎒 🐵🐵 🔼🔼 🔕🔕 🔇🔇 📵📵 💆💆 🥘🥘
🔔🔔 🔎🔎 🦽🦽 📍📍 🚮🚮 🧝🧝 🐣🐣 🧴🧴 🔟🔟 🛴🛴 🖥🖥 ♐ 🎡🎡 ⛩ 🗻🗻
🛫🛫 🧥🧥 🏪🏪 🛣🛣 🏢🏢 🏣🏣 🏜🏜 🦂🦂 🏝🏝 ⛱ 🛰🛰
Figure 3. Second largest frequency of emoji usage by
Millennials.

GenZ: 👍👍 🐺🐺 ✅ 👾👾 😭😭 🤡🤡 💻💻 🤯🤯 🇺🇺 🇸🇸 😔😔 😈😈 ✊ 🧑🧑
😎😎 🥵🥵 🔥🔥 🙏🙏 💙💙 🕊🕊 🤝🤝 💪💪 🤮🤮 🤢🤢 🕵🕵 🤧🤧 ♡ 👹👹 🍇🍇 🅱🅱
🅰🅰 👀👀 � 😱😱 💀💀 🤓🤓 🐻🐻 🍁🍁 😤😤 😡😡 👄👄 🗳🗳 🦆🦆 👉👉 👈👈
👎👎 🤨🤨 👁👁 🚫🚫 💅💅 🚀🚀 🇬🇬 🇧🇧 🥱🥱 💦💦 👅👅 🇨🇨 🇦🇦 😨😨 🍷🍷 🥁🥁 😧😧
🍪🍪 🧟🧟 🏳🏳 🔌🔌 👴👴 🤖🤖 🇲🇲 👑👑 🔫🔫 🤑🤑 🥜🥜 👨👨 🐄🐄 🥶🥶 ❌
👶👶 🐁🐁 🤠🤠 😰😰 😦😦 🔛🔛 ❗ 💰💰 🤐🤐 🍆🍆 🧍🧍 👿👿 🍔🍔 👩👩
🍑🍑 😟😟 🌼🌼 🇭🇭 🦑🦑 🐀🐀 ⚧ ❓ 🎥🎥 🎩🎩 🙀🙀 💣💣 🐶🐶 🐎🐎 ✝ 🇵🇵
😽😽 🚽🚽 🐸🐸 🧀🧀 👺👺 🚴🚴 🌍🌍 🗿🗿 💵💵 🙍🙍 🥚🥚 🧪🧪 😷😷 ✍ 😙😙
🗣🗣 🧚🧚 🍵🍵 🐊🐊 🏀🏀 👇👇 🌊🌊 🐙🐙 ⛓ 💬💬 🦰🦰 🍦🍦 🔺🔺 ✿ 📈📈
🧢🧢 🇪🇪 🇱🇱 🇷🇷 🌴🌴 🧘🧘 🌽🌽 🚒🚒 🥞🥞 💲💲 🥖🥖 🦅🦅 🦀🦀 🎆🎆 🥥🥥 🇮🇮 🇫🇫 🇻🇻
🦍🦍 🦐🦐 🥊🥊 🏈🏈 🗽🗽 🐮🐮 ✡ ⛑ ⚖ 🇳🇳 ⛏ 🌔🌔 🧋🧋 🔝🔝 🚶🚶 👳👳
👦👦 🌦🌦 🍴🍴 🏉🏉 🎙🎙 🥛🥛 🛢🛢 🇴🇴 🇹🇹 🇯🇯 🅾🅾 🎣🎣 🏫🏫 🆕🆕 🎢🎢 ✧ 🐌🐌
🦶🦶 ⛽ ➪ 🇰🇰 ⚔ 🇩🇩 📮📮 🍞🍞 ♒ 🦧🦧 🦦🦦 🌝🌝 🦾🦾 🛏🛏 🇽🇽 💍💍 🇿🇿 ⚗

🧫🧫 🆖🆖 🔴🔴 👪👪 ⚪ 🧇🧇 🔙🔙 🚭🚭 🥌🥌 ⚽ ⚾ 🥧🥧 🧃🧃 🐂🐂 🤾🤾
🔱🔱 🛩🛩 ⚜ 🍝🍝 🍉🍉 🧮🧮 🧏🧏 🆗🆗 ♣ 🐖🐖 🔗🔗 🧱🧱 🦣🦣 ♿ 🏦🏦 🔞🔞
🛶🛶 🌨🌨 👬👬 🚤🚤 🖇🖇 🚾🚾 🍏🍏 🎞🎞 🥋🥋 📷📷 🌂🌂 🚼🚼 🐽🐽 🦌🦌 🧎🧎 🛎🛎
🥟🥟
Figure 4. Largest frequency usage of emojis used by GenZ.

Emojis make up about 0.069% of all characters in our dataset
based on the total amount of emojis over all the characters as
seen in Table 5.

Labels Characters Emojis
Baby Boomer 106,440 28

Gen X 24,892,772 22,564
Millennial 46,839,035 27,062

Gen Z 38,262,283 26,451
Total: 110,100,530 76,105

Table 5. Total characters and emojis per generation and
combined.

The most common generation on Reddit that uses emojis
based on total characters for respective generation data is
GenX (0.09%), followed by GenZ (0.07%), Millennials
(0.06%), and Baby Boomers (0.03%) from Table 5. Gen Z has
the highest amount of emojis by word count with that
generation’s data (0.46%) since they use features more in their
communication on platforms based on the data in Table 2.

In the next section, we will focus on the models chosen to see
the classification capabilities for unseen instances for each
generation.

4. Model

Once again, we are interested in building a model that is
trained on our dataset and seeing if we can classify unseen
instances by generation. We chose to experiment with three
machine learning techniques: (1) Multinomial Naïve Bayes,
(2) Neural Network, and (3) Decision Tree. Using our training
set we wished to see if the ML models would classify the
comments better in a Standard Form (where all features are
treated equally) or in a Selective Features Form (where slang
words of best capability and emojis were presented to the
model as additional features).

4.1 Multinomial Naïve Bayes

Naïve Bayes applied to the training dataset, treats all features
as independent and equally important. When classifying the
comments, the model computes posterior probabilities. Slang
and emojis are treated the same as other features since the
model assumes all are independent. NLTK is used for text
preprocessing, including tokenization, stop word removal, and
punctuation stripping. TF-IDF Vectorization converts the text
into numerical features, emphasizing word importance. Naïve
Bayes then calculates posterior probabilities to predict the
most likely generation for each comment, considering all
features equally.

4.2 Neural Network

The Neural Network (NN) model encodes input data text
comments, as numerical features using the TF-IDF (Term
Frequency-Inverse Document Frequency) vectorizer. TF-
IDF was chosen because it emphasizes the importance of
words that are significant to specific comments, while
reducing the weight of more common words, helping the
model focus on distinctive language patterns relevant to
the classification task.

The architecture of the neural network is a feedforward
design with dense layers. The first hidden layer contains
128 neurons, followed by a second hidden layer with 64
neurons. Both layers use the ReLU (Rectified Linear
Unit) activation function, which introduces non-linearity
to the model, enabling it to capture complex patterns in
the data [7]. Dropout layers were incorporated after each
hidden layer with a 30% dropout rate to help prevent
overfitting. By randomly disabling a portion of the
neurons during training, dropout forces the network to
generalize better and not over-rely on specific features.
The output layer consists of 4 neurons corresponding to
the four generations with a SoftMax activation function
applied. This function converts the raw output of the
network into probabilities, with each value representing
the likelihood that a given comment belongs to one of the
four categories. The model was trained using the Adam
optimizer, which adjusts the learning rate during training
for more efficient convergence. The loss function used
was sparse categorical cross-entropy, suitable for multi-
class classification when the labels are integer-encoded.
The model was trained for 5 epochs with a batch size of
32, from the training data.

We also created a second NN model that uses emoji and
slang features in addition to the TF-IDF. This separate
JSON file containing generation-specific emoji lists were
used with each comment, having a binary vector created
indicating the presence or absence of each emoji relevant
to that generation. This feature was processed and padded
to ensure that all vectors for emojis had the same length,
making them compatible for integration into the model.
To create both neural network models, I used TensorFlow
with the Keras API for building the neural networks [8].
The first model was built using a feedforward architecture
with TF-IDF vectorization for text feature extraction. The
second model incorporated additional features of emoji
and slang data, extracted from JSON files. Both models
were trained with the Adam optimizer and sparse
categorical cross-entropy loss function for multi-class
classification.

4.3 Decision Trees

We also built a Decision Tree (DT) classifier, using the
Classification and Regression Tree (CART) algorithm [9].
CART uses a binary tree structure where each internal
node represents a feature, and each leaf node represents a

class label. The tree's splitting criterion was the Gini index, a
measure of impurity that helps identify the best split by
minimizing misclassifications. The use of slang and emojis is
important because they allow the model to focus on the
relevant information in the data, which helps in the accuracy.
The decision-making options with slang features use TF-IDF
vectorization to capture the importance of words in the
comments and incorporate generational slang counts by
counting slang words specific to each generation. These slang
features are derived from predefined lists of slang words for
each generation. The TF-IDF and slang features are combined
into a single feature matrix, which is then used to train a
Decision Tree classifier.

The next section will go over the results of our current models
and their working versions to see the classification outputs
when running on the test data.

5. Results

In this section, we present the results of running our models
against our unseen test set of standard datasets plus selective
feature datasets that contain in separate files the unique slang
words, and emojis. The randomness of the training and testing
set being made makes these results fluctuate a bit with each
execution of the models but should not be far off from what is
shown. We also compare performances of balanced versus
imbalanced data. Using measures of Precision, Recall, F1-
Score, Support, and Area Under the Precision-Recall Curve
(AUC-PR). Precision, recall, and F1-score are key metrics for
evaluating classification models.

Precision measures how many of the predicted positive cases
are actually correct, focusing on reducing false positives.
Recall measures how many actual positive cases the model
successfully identifies, aiming to minimize false negatives.
F1-score is the harmonic mean of precision and recall,
providing a balanced measure when both are important. A
high precision means fewer incorrect positive predictions,
while high recall ensures most actual positives are detected.
F1-score is useful when there’s a trade-off between precision
and recall, such as in spam detection or medical diagnoses
[10]. AUC-PR is a performance metric for evaluating
classification models, especially when dealing with
imbalanced datasets. It measures the trade-off between
precision (how many predicted positives are actually correct)
and recall (how many actual positives the model captures). A
high AUC-PR score indicates better performance, meaning the
model effectively balances identifying positive cases while
minimizing false positives.

5.1 Multinomial Naïve Bayes

In Table 6 we see our accuracy rate for an imbalanced data set
using the Multinomial Naïve Bayes model.

Label Precision Recall F1-
Score Support AUC-

PR

(%)
Baby

Boomer 0.00 0.00 0.00 106 0.05

GenX 0.65 0.37 0.47 52386 60.47
Millennial 0.52 0.72 0.61 73848 62.77

GenZ 0.64 0.59 0.57 65001 68.41
Accuracy: 0.58 191341
Table 6. Imbalanced dataset classification using MNB.

Our NB model has a 58% accuracy in classifying the
imbalanced dataset, compared to a baseline of 38.6%,
which represents the frequency of the most common class,
Millennial. This baseline is calculated by dividing the data
from one generation by the total amount of data. The
AUC-PR also evaluates the model’s performance in
classifying comments by their respective generation, with
scores in the 60-68% range for GenX, Millennial, and
GenZ.

The difference between Accuracy and AUC-PR is that
Accuracy measures the proportion of correct predictions
(true positives and true negatives) out of all predictions,
while the AUC-PR provides a more detailed assessment
by considering precision and recall [11]. This is especially
valuable in imbalanced datasets where AUC-PR focuses
on the model's ability to predict the positive class, making
it more effective when class distribution is skewed [11].
Support in the table refers to the number of actual
occurrences of each class in the dataset. This offers
context for metrics like precision, recall, and F1-score,
which can be influenced by the class distribution.

If we retrain this model with balanced data sets, by under-
sampling the majority and larger classes to be the same
amount as the minority class, results are better with
accuracy improving from 58% to 77%. The results of
improvement are shown in Table 7.

Label Precision Recall F1-
Score Support

AUC-
PR
(%)

Baby
Boomer 0.74 0.73 0.73 102 83.03

GenX 0.77 0.76 0.77 97 89.32
Millenni

al 0.85 0.79 0.82 104 93.66

GenZ 0.75 0.82 0.78 104 88.53
Accurac

y: 0.77 407

Table 7. Balanced dataset classification of MNB.

5.2 Neural Networks

Our NN model, when trained on the original imbalanced
dataset has comparable accuracy to NB as seen in Table 8.
It gets around 59% accuracy, which is comparable to the
accuracy of the imbalanced MNB model of 58%. But it
improves somewhat for Baby Boomers in the AUC-PR
(up to 0.12%) score while being similar to the other
generations.

Label Precision Recall F1-
Score Support

AUC-
PR
(%)

Baby
Boomer 0.00 0.00 0.00 106 0.12

GenX 0.58 0.52 0.55 52386 61.42
Millennial 0.57 0.58 0.58 73848 63.23

GenZ 0.61 0.66 0.63 65001 65.94
Accuracy: 0.59 191341
Table 8. Imbalanced classification with standard NN.

Retraining the model on a balanced dataset as seen in Table 9
also yields comparable results to NB balanced dataset. Both
models have the same accuracy results with the balanced
dataset with some fluctuation in the AUC-PR scores.

Label Precision Recall F1-
Score Support

AUC-
PR
(%)

Baby
Boomer 0.76 0.75 0.76 102 83.40

GenX 0.76 0.75 0.76 97 86.23
Millennial 0.80 0.83 0.81 104 90.88

GenZ 0.77 0.76 0.77 104 86.92
Accuracy: 0.77 407
Table 9. Balanced classification with standard NN.

However, when adding slang and emoji features, the
performance of the NN dramatically improves to 91%
accuracy as seen in Table 10.

Label Precision Recall F1-
Score Support

AUC-
PR
(%)

Baby
Boomer 0.82 0.92 0.87 102 94.19

GenX 0.92 0.89 0.91 97 95.63
Millennial 0.96 0.91 0.94 104 97.65

GenZ 0.93 0.90 0.92 104 97.51
Accuracy: 0.91 407
Table 10. Balanced classification with selective features NN.

5.3 Decision Trees

We only evaluated the DT model on a balanced dataset with
slang features incorporated. The model yields an accuracy of
59%. For the balanced classification with the slang words only
we get these types of outcomes below in Tables 11 and 12.

Label Precision Recall F1-
Score Support

AUC-
PR
(%)

Baby
Boomer 0.46 0.59 0.52 161 55.85

GenX 0.78 0.58 0.67 156 71.50
Millennial 0.65 0.60 0.62 147 67.12

GenZ 0.60 0.62 0.61 146 65.79
Accuracy: 0.60 610
Table 11. Balanced classification standard DT.

Label Precision Recall F1-
Score Support

AUC-
PR
(%)

Baby
Boomer 0.63 0.71 0.67 161 71.30

GenX 0.56 0.55 0.56 156 61.41
Millennial 0.60 0.57 0.59 147 63.95

GenZ 0.54 0.51 0.53 146 58.40
Accuracy: 0.59 610
Table 12. Balanced classification with slang-only DT.

5.4 Analysis

In this section, we will discuss the current performance of
each model implementation. The DT, MNB, and NN
models do not have results for certain versions of the data
due to storage limits on the current server they run on.

Figure 5. All current ML model performances.

As shown in Figure 5, we present at least two versions for
each mode. For MNB we can see improvement from
imbalanced to balanced showing that when all data is
balanced it improves in its independence calculations for
each generation based on features. For the DT there is a
small decrease in accuracy between the standard-balanced
to a feature-balanced version. For the NN model, accuracy
increases from imbalanced to balanced; the addition of
both features seems to show improvement in accuracy for
classifying unseen instances for each generation. Overall,
our NN models show the best performance in improving
generational classifications based on emojis and slang.

6. Discussion

Based on the results that are achieved for current
implementations of the standard and selective features
models, the results are very interesting. The NN model
showed the most drastic improvement in accuracy for
generations based on selective features. The DT model
barely showed improvements even with only half of the
selective features added in the model. This can be due to
the DT models not having the addition of dropping a
fraction of nodes in its path by summing up all the
weights for the features it has towards a classification.
The MNB model also shows improvement in the balanced
dataset but not as much as the balanced data NN model.

Our results show promising capabilities for classifying unseen
comments based on generations using both slang and emojis.

7. Conclusion

Our NN model performed the best for generational
classification based on select features, which included slang
and emojis. Some limitations of our results are that slang is
very ambiguous and constantly changing. Future
improvements for slang, preprocessing, and stemming could
be incorporated into this work, as well as other social media
platforms. To better improve our understanding of how
generations use such features since it is constantly changing
over time, we can expand our check of words with other
locations such as Urban Dictionary, and Merriam-Webster
[12,13]. Also, we would wish to account for n-gram instances
where more than one slang word is combined [14]. With better
slang detection our long-term goal is to eventually improve
results with a plan of creating a cultural translator that can
translate specific slang and emojis into one’s own emoji and
slang usage to better understand each other.

0%

50%

100%

MNB DT NN

A
cc

ur
ac

y

Models

Performance

Imbalanced Balanced Balanced w/features

References:

[1] Choi, D., et al. “Characterizing conversation
patterns in reddit: From the perspectives of content
properties and user participation
behaviors." Proceedings of the 2015 acm on
conference on online social networks. 2015.

[2] Kostadinovska-Stojchevska, B., and E. Shalevska.
“THE SKULL EMOJI IN GEN-Z INTERNET SLANG:
A STUDY OF ITS USE AS TONE TAG AND
PUNCTUATION”. International Journal of Education
Teacher, vol. 27, May 2024, pp. 124-30.

[3] Wu D, Zhang X and Zhang X (2024) Is there an
intergenerational discrepancy in the comprehension and
aesthetic preference regarding emoji usage? Evidence
from WeChat. Front. Psychol. 15 (2024): 1424728.

[4] Anonymous ACL submission, Slang or Not?
Exploring NLP Techniques for Slang Detection using the
SlangTrack Dataset. ACL ARR 2024 December
Submission 1763 Authors, 16 Dec. 2024.

[5] Praw-Dev. “GitHub - Praw-dev/Praw: PRAW, an
Acronym for ‘Python Reddit API Wrapper’, Is a Python
Package That Allows for Simple Access to Reddit’s
API.” GitHub, github.com/praw-dev/praw.

[6] Bird, Steven, Ewan Klein, and Edward Loper. natural
language processing with python: analyzing text with the
natural language toolkit. " O'Reilly Media, Inc.", 2009.

[7] Kulathunga, Nalinda, et al. "Effects of nonlinearity
and network architecture on the performance of
supervised neural networks." Algorithms 14.2 (2021): 51.

[8] Lynch, Conor, et al. "A review of open-source
machine learning algorithms for twitter text sentiment
analysis and image classification." 2020 International
Joint Conference on Neural Networks (IJCNN). IEEE,
2020.

[9] Priyam, Anuja, et al. "Comparative analysis of
decision tree classification algorithms." International
Journal of current engineering and technology 3.2
(2013): 334-337.

[10] Filali, Adnane, and Mostafa Merras. "Enhancing
Spam Detection with GANs and BERT Embeddings: A
Novel Approach to Imbalanced Datasets." Procedia
Computer Science 236 (2024): 420-427.

[11] Keilwagen, Jens, Ivo Grosse, and Jan Grau. "Area
under precision-recall curves for weighted and
unweighted data." PloS one 9.3 (2014): e92209.

[12] Urban Dictionary, March 9: yawnsense. (n.d.).
In Urban Dictionary. https://www.urbandictionary.com/

[13] Merriam-Webster. (n.d.). Dictionary by Merriam-
Webster. In Merriam-Webster. https://www.merriam-

webster.com/

[14] Allam, Hesham, et al. "Text Classification: How Machine
Learning Is Revolutionizing Text
Categorization." Information 16.2 (2025): 130.

https://www.urbandictionary.com/
https://www.merriam-webster.com/
https://www.merriam-webster.com/

Undergraduate Articles

THE FUTURE OF TEACHING: AI ASSISTED LEARNING PLATFORM

Mya Bishop, Adam Faust, Alexander Furst, Si Chen, Liu Cui

West Chester University
mb994977@wcupa.edu, af991408@wcupa.edu, af1005095@wcupa.edu, schen@wcupa.edu, lcui@wcupa.edu

ABSTRACT
AI has increasingly been integrated into learning platforms
to personalize educational experiences. Despite its
potential, fully adaptive and personalized learning systems
remain elusive due to limitations in educational resources,
interactive models, analytical capabilities, and adaptability.
In this paper, we propose an architecture designed to
augment AI’s capabilities in education. This architecture
not only assists instructors in providing personalized
materials and tailored assessment questions but also offers
learners individualized learning experiences. Additionally,
it provides valuable research opportunities for scholars in
the field of AI-driven education.

KEY WORDS
AI Assisted Learning, Knowledge Tracing

1. Introduction
Educators routinely encounter the challenge of varying
student skills and learning styles, which significantly
influences their knowledge acquisition [1]. Traditional
teaching methods often fall short in catering to the diverse
needs within a classroom. For instance, sensing learners
thrive on concrete information such as examples and data,
whereas intuitive learners favor abstract concepts like
theories and flowcharts [2]. Furthermore, students with a
solid grasp of prerequisite knowledge may wish to advance
quickly, in contrast to peers who struggle with foundational
concepts and require a more measured pace.

To address these disparities, there has been a surge in the
development of adaptive e-learning systems over the past
decade [3]. Nevertheless, a fully personalized and adaptive
learning tool remains elusive, hindered by constraints in
educational resources, interactive models, analytical
capabilities, and adaptability [4].

The integration of Large Language Models (LLMs) within
Artificial Intelligence (AI) presents an unprecedented
opportunity to overcome these limitations [5]. By
leveraging LLMs, we can develop an AI-driven educational
assistant tool that is both instructor-guided and student-
personalized, catering to individual learning preferences
and proficiencies [6].

The objectives of the AI assisted learning platform are
threefold:

1. Develop a Dynamic Learning Platform: Create an
AI-assisted adaptive learning environment that
recognizes and adapts to each student's unique
learning style and proficiency, using advanced AI
to deliver a customized educational experience [7].

2. Enhance Instructional Design and Delivery:
Provide educators with sophisticated tools to curate
and administer computer science curricula,
allowing for a versatile range of examples, teaching
methods, and assessment techniques [8].

3. Foster Research Opportunities in AI: Offer student
workers hands-on research experiences within the
fast-evolving domain of AI, promoting practical
skills and a comprehensive understanding of AI's
role in educational strategies.

This paper focuses on (1) prototype of the AI assisted
Learning platform and (2) knowledge tracing that predict
students’ future performance based on their past responses.

The organization of the paper is as follows. Section 2
introduces the AI assisted learning environment Users.
Section 3 illustrates the system architecture. Section 4 is the
prototype of the system. Section 5 describes the preliminary
knowledge tracing model implemented. Section 6 develops
the knowledge tracing for Computer Science Education.
Section 7 concludes the paper and highlights directions for
future research.

2. AI Assisted Learning Environment Users
The AI-Assisted Learning Environment is designed around
the interaction of four key user groups, crucial for the
development and success of the project:

1. Students: They interact with course content to learn
and provide essential feedback through assessments
and discussions, which inform the adaptive learning
process [5].

2. Educators: They curate course content and evaluate
both student performance and the overall
effectiveness of the learning environment,
contributing to the refinement of AI models.

3. Technicians: These specialists develop and fine-
tune the AI algorithms, ensuring the system
performs optimally and aligns with educational
goals.

4. Student Researchers: Working with technicians,
they aid in the development and implementation of

mailto:mb994977@wcupa.edu
mailto:af991408@wcupa.edu
mailto:af1005095@wcupa.edu
mailto:schen@wcupa.edu

AI algorithms, gaining hands-on experience in the
field.

Each group's contributions are vital to achieving the
project's goal of creating a personalized learning
experience.
3. System Architecture
As shown in Figure 1, our system is structured around the
Content Design and Adaptation Engine, with three main
components:

1. Learner Model Engine: Identifies students'
learning styles from interaction logs, feeding this
information into the AI Engine.

2. Content Design & Presentation Engine: Merges
educator input and online resources to create
adaptable content, customized by the LLM to fit
different learning styles, such as visual or
reflective [9].

3. AI Engine: Predicts learning preferences using
advanced algorithms and guides the LLM to
personalize the content delivery, ensuring that each
student's educational experience is as effective as
possible [10].

The architecture of this system is central to our objective of
enhancing computer science education with AI, facilitating
a dynamic and responsive learning environment that adapts
to individual student needs and preferences.

The methodologies are tailored to our objectives of
improving academic outcomes through personalized
learning and providing educators with robust tools for
course delivery. We aim to measure the success of these
methodologies through improved student engagement and
learning outcomes, as well as positive feedback from
educators on the utility of the AI tools.

Figure 1. AI Assisted Adaptive Learning Environment System

Architecture

4. Prototype
Galaxymentor System (galaxymentor.com, in Figure 2) is
the pilot platform for our concept in action. It currently
supports subjects from computer programming to math
basics, illustrating the AI system’s versatility. The backend

is powered by Go language, and the frontend by NodeJS,
integrating AI technologies like GPT-4 and GPT-3.5-Turbo,
with upcoming plans to incorporate LLAMA2 model. The
system adeptly tailors' content to user preferences, offering
an engaging and interactive learning experience.

4.1 Services Provided in the Platform
There are four components of the AI assisted learning
platform, namely Learn, Example, Quiz, and Review.
Currently, only Learn is available. While users try each of
the component, they could choose the depth of learning from
following categories: Elementary, Middle School, High
School, Undergrad, Graduate, Ph.D, and Professor. Based on
the level that the user chooses, different content will be
generated automatically by AI. In addition, Galaxymentor
support multiple languages, such as English, Spanish,
Franch, Chinese, Korean, etc.

Figure 2. Interface Snapshot: Galaxymentor's AI-Generated Content

Tailored to User-Selected Topics

4.2 Generate Learning Content
Each of the course on the AI assisted learning platform has a
json file for course template. On one extreme, it can be as
simple as only has the course name and chapter name. On
the other extreme, the instructor can provide detailed
examples that they want to use for each of the knowledge
point. Here is a sample course template for CSC 240
Computer Science III.

{
 "CourseID": "21",
 "CourseTitle": "CSC 240 Computer Science III (With
JAVA)",
 "Chapters": [
 {
 "chapterTitle": "Project Design and Planning",
 "subItems": [
 {
 "subItemTitle": "Project Design Principles",
 "knowledgePoints": [
 "Understanding Software Design Patterns",
 "UML and Class Diagrams",
 "Identifying Project Requirements"
]
 },

 {
 "subItemTitle": "Project Planning and Milestones",
 "knowledge Points": [
 "Setting Project Milestones",
 "Creating Development Checklists",
 "Iterative Development and Feedback Loops"
]
 }
]
 },
5. Knowledge Tracing
In addition to generate course content, another important
function for AI is to generate assessment questions. The
goal of generating assessment questions is to provide
students with enough exercise problems while pushing them
quickly from their current difficult level to a higher one.
Therefore, the AI engine needs to predict whether the
student will answer the next question correctly or not. If the
probability of answering the next question in the same topic
and same difficult level is high, we want to provide
questions in a higher difficult level. If the probability of
answering the next question in the same topic and same
difficult level is low, we want to provide question in the
same difficult level.

5.1 Related Work in Knowledge Tracing
The technique that we use to predict students’ capability of
answering the next question correct is knowledge tracing.
Knowledge tracing refers to the problem of predicting
students’ future performance by estimating students’ time-
varying concept/skill mastery level from their past
responses to questions.

Knowledge tracing model can be broadly categorized as (1)
traditional knowledge tracing models; and (2) deep
knowledge tracing (DKT) models. There are two main
methods under traditional knowledge tracing models,
namely Bayesian knowledge tracing (BKT) and factor
analysis models. BKT models often use probabilistic model
such as Hidden Markov Model and Bayesian Belief
Network to trace students’ changing knowledge master
level. One of the key models in factor analysis model is
Additive Factor Model (AFM), which is a logistic
regression model. It calculates the probability of answering
a question correctly as proportion to an additive
combination of the ability of the student, the difficulty of
skills involved in the item, and the amount of the learning
gained from each attempt. The three assumption of ATM is:
(1) students have different prior knowledge; (2) students
learn at the same rate; (3) some skills are easier to master
than others [11]. DKT uses deep learning for knowledge
tracing. It employs Recurrent Neural Network (RNN) to
predict the probability of correctly answering an exercise at
each time step [11, 12]. The Dynamic Key-Value Memory
Networks for Knowledge Tracing (DKVMN) is one of the
DKT.

5.2 Implementing Dynamic Key-Value Memory
Networks for Knowledge Tracing
This implementation1 provides a practical approach to
knowledge tracing using neural networks inspired by
DKVMN. The code creates a system that can predict
whether a student will answer a question correctly based on
their history of interactions with different skills or
knowledge components. The reason why we chose this
algorithm to implement is because in addition to the topics,
it also considers students’ learning capability change.

In the following sections, we will introduce the knowledge
tracing algorithm implemented in this paper, data
processing, neural network architecture, results, and
customization. Section 6.1 will discuss how to modify this
implementation to the assessment for Computer Science
education.

5.3 Knowledge Tracing Algorithm
The model starts from (1) determine students’ learning
ability. There are two steps to determine students’ learning
ability. First, the correct rate and error rate of questions
answered is calculated. Second, a K-means Clustering
algorithm is used to group students into three groups. After
the clustering is completed, the average learning ability for
each group is calculated. (2) A crossover feature that
combines student’s learning ability, group average learning
ability, whether the student asks for help, and number of
attempts are determined then fed into the DKVMN model.
(3) The DKVMN model understands the similarities of
exercise and track the knowledge level that students have.

5.3.1 Data Processing
The implementation works with synthetic datasets from the
DeepKnowledgeTracing repository, which represent student-
skill interactions in a matrix format:

1. Data Extraction: The data loader downloads the
repository and extracts the synthetic datasets, where
each row represents a student, and each column
represents a skill/question.

2. Data Transformation: The implementation converts
this matrix format into a sequence format where
each row represents a single interaction (user_id,
skill_id, correct), which is the standard format for
knowledge tracing.

3. Sequence Creation: For each student, we create
sliding windows of interactions to capture the
sequential nature of learning. Each window consists
of previous skill interactions and correctness
values, with the next interaction serving as the
prediction target.

1 Github repository:
https://github.com/MyaBishop22/DKVMN-for-
KT/blob/main/README.md

5.3.2 Model Architecture
The implementation uses a simplified but effective neural
network architecture:

1. Embedding Layers: Separate embedding layers for
skills and correctness values convert categorical
identifiers into continuous vector representations,
allowing the model to learn relationships between
skills.

2. Flattened Representation: The embeddings are
flattened to create a fixed-length representation of
the student's knowledge state based on their
interaction history.

3. Dense Layers: Multiple dense layers with dropout
for regularization process this representation to
make the prediction.

4. Output Layer: A sigmoid activation function
produces a probability that the student will answer
the next question correctly.

5.3.3 Training and Evaluation
The model is trained and evaluated with a focus on standard
knowledge tracing metrics:

1. Training Process: The model is trained on 80% of
the data, with 20% of that set aside for validation
to monitor for overfitting.

2. Evaluation Metrics: The model is evaluated on
Area Under the ROC Curve (AUC) and accuracy,
the standard metrics in the knowledge tracing
literature and used in Table 1 of the paper.

3. Results Presentation: Results are presented in a
table format.

5.4 Results
The result we got is the same as the authors shown in the
paper [13], which verify the correctness of implementation.
The algorithm will be customized to the input we have for
the computer science related questions.

Figure 3. Results for DKVMN implementation

5.5 Customization
The implementation can be modified in several ways:

1. Change the window_size parameter to experiment
with different history lengths

2. Adjust the model architecture by modifying the
build_kt_model function

3. Change the number of training epochs for more

refined results
4. Try different synthetic datasets by modifying the

dataset selection logic

6. Knowledge Tracing in Computer Science
Education
There are two types of assessments in Computer Science
education, open-ended questions such as short answers and
programming and binary-valued questions where the
answers are evaluated as right or wrong. The knowledge
tracing that we implemented could only capture the binary-
valued questions.

6.1 Binary-Valued Questions
In order to quickly push students from their current learning
levels (low, medium, or high) to higher level while give
them enough exercises. Here is the design of assessment
input data that needed for binary-valued questions. In the
next stage of the research, we will use AI to automatically
generate assessment questions that provide such data.

Majority of the knowledge tracing model use
ASSISTmentData as the training dataset. While the public
dataset helps researchers compare different knowledge
tracing algorithms, it does not tailor to Computer Science
problems. Here are the inputs needed for each of the
assessment questions we will get for a more accurate
prediction.

• user_id: the ID of the student doing the problem
• prior_problem_count_topic_diff: total number of

problems tried by this students in topic m and
difficult level n

• priori_correct_topic_diff: the number of problems
the student had answered correctly in topic m and
difficult level n

• problem_id: the ID of the problem
• problem_id_tried: total number of attempts for

problem_id n
• problem_id_correct: total number of correct

attempts for problem id n
• problem_tag: topic of the problem
• correct:

o 1 = Correct
o 0 = Incorrect

• first_action: whether the student requested help
during the first exercise

• difficulty_id: high, medium, low

The design logic is that in addition to difficult level of
different topics, for example, define variable is easier than
loop and decision structure. Each topic also contains
questions with different difficult levels. Students’ learning
capabilities will be applied to determine the starting difficult
level, and the changing rate of difficult level. Also, it is
possible that a conceptually easy questions is difficult for
students because of related knowledge/skill required.
Therefore, the difficulty level will be adjusted by the correct

answer rate accordingly.

6.2 Open-Ended Questions

The only paper we found on open-ended questions is Open-
ended knowledge tracing for computer science education
[14]. The difficult part for open-ended questions is that the
knowledge tracing model need to predict students’ precise
open-ended responses to programming questions. Then, it
integrates programming synthesis techniques using
language models with student knowledge tracing methods
to determine whether students will answer this question
correctly or not. We will start from this method and further
adjust it based on the data we got.

7. Evaluation of the AI Assisted Learning
Platform
The effectiveness and educational impact of the AI assisted
and adaptive learning environment will be evaluated
through a blend of objective and subjective meausres.
Objective Measures:

• Performance Improvement: Statistical comparison
of test/quiz grades on Galaxymentor system and
completion rates pre- and post-implementation
using paired t-tests to evaluate significant
differences.

• Engagement Analysis: Evaluation of interaction
logs of Galaxymentor system through descriptive
statistics to quantify system usage patterns and
time on task.

• Learning Gains: Measurement of concept mastery
via pre- and post-tests, analyzed using Analysis of
variance (ANOVA) to discern learning
advancements attributable to the system.

Subjective Measures:
• User Satisfaction: Survey data analyzed using a

Likert scale to determine user satisfaction levels
and perceived ease of use.

• Qualitative Feedback: Thematic analysis of open-
ended survey responses and focus group
discussions to extract prevailing opinions and
suggestions for system improvement.

This integrated approach will provide a thorough
assessment of the system, ensuring that it meets both
technical standards and educational needs.

8. Conclusion
Our mission is to create an inclusive educational tool that
transcends disciplinary boundaries. We plan to collaborate
with faculty across various departments, including STEM
fields, humanities, and social sciences, to adapt our
platform's content for their specific academic requirements.
This will not only ensure the pedagogical validity of our
platform but also harness the collective expertise of our
faculty, thus enhancing the educational value for a diverse
student body.

In the future, we have two stages to further develop this
research. First, create codes that automatically generate
assessment questions. We will start from binary-value
questions, such as multiple choice, fill-in the blank, and
True/False, and then open-ended questions. Topics will be
limited to loop, decision structure, and array. So, all students
in major can try it out. Also, questions will be generated in
three different difficult levels. Second, after collecting the
data, we could implement the knowledge tracing with the
data we have to predict students’ knowledge state, then feed
this information to the AI model, which will further
improve students’ personalized learning experience.

References

[1] G. C. Magulod Jr., “Learning styles, study habits and
academic performance of Filipino University students in
applied science courses: Implications for instruction,”
JOTSE: Journal of Technology and Science Education,
vol. 9, no. 2, pp. 184–198, 2019.

[2] R. R. Maaliw III, “Adaptive virtual learning
environment based on learning styles for personalizing e-
learning system: Design and implementation,” Online
Submission, vol. 8, no. 6, pp. 3398–3406, 2020.

[3] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen,
“Exploring machine learning methods to automatically
identify students in need of assistance,” in Proc. 11th
Annu. Int. Conf. Int. Comput. Educ. Res., 2015, pp. 121–
130.

[4] G. Kaymakci and S. Can, “Investigation of the effects
of some variables on middle school students’ problem-
solving skills, science process skills and learning styles,”
Educational Policy Analysis and Strategic Research, vol.
16, no. 1, pp. 394–426, 2021.

[5] P. Denny, J. Prather, B. A. Becker, C. Mooney, J.
Homer, Z. C. Albrecht, and G. B. Powell, “On designing
programming error messages for novices: Readability and
its constituent factors,” presented at the ACM Conference
on Programming Language Design and Implementation
(PLDI), May 2021.

[6] M. A. Cardona, R. J. Rodríguez, and K. Ishmael,
Artificial intelligence and the future of teaching and
learning. Department of Education, 2023.

[7] B. Pardamean, T. Suparyanto, T. W. Cenggoro, D.
Sudigyo, and A. Anugrahana, “AI-based learning style
prediction in online learning for primary education,”
IEEE Access, vol. 10, pp. 1–1, 2022.

[8] A. Hellas, J. Leinonen, S. Sarsa, C. Koutcheme, L.
Kujanpää, and J. Sorva, “Exploring the responses of large
language models to beginner programmers’ help
requests,” in Proc. 2023 ACM Conf. Int. Comput. Educ.
Res. (ICER ’23), vol. 1, pp. 93–105, Association for
Computing Machinery, 2023.

[9] E. Kasneci et al., “ChatGPT for good? On
opportunities and challenges of large language models for
education,” Learning and Individual Differences, vol.
103, p. 102274, 2023.

[10] O. El Aissaoui, Y. E. A. El Madani, L. Oughdir, and
Y. El Allioui, “Combining supervised and unsupervised
machine learning algorithms to predict the learners’
learning styles,” Procedia Computer Science, vol. 148, pp.
87–96, 2019.

[11] G. Abdelrahman, Q. Wang, and B. Nunes,
“Knowledge tracing: A survey,” ACM Computing
Surveys, vol. 55, no. 11, pp. 1–37, 2023.

[12] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein, “Deep knowledge
tracing,” in Advances in Neural Information Processing
Systems, vol. 28, 2015.

[13] J. Zhang, X. Shi, I. King, and D.-Y. Yeung, “Dynamic
key-value memory networks for knowledge tracing,” in
Proc. 26th Int. Conf. World Wide Web (WWW), 2017, pp.
765–774.

[14] N. Liu, Z. Wang, R. Baraniuk, and A. Lan, “Open-
ended knowledge tracing for computer science education,”
in Proc. 2022 Conf. Empirical Methods in Natural
Language Processing (EMNLP), 2022.

ON PRODUCTIVENESS AND COMPLEXITY IN REAL FUNCTION
ANALYSIS THROUGH HILBERT’S 10TH PROBLEM

Emily Riley, Jingnan Xie
Millersville University of Pennsylvania, Computer Science Department

ABSTRACT
In this paper, we introduce the concept of productiveness,
which is a stronger form of non-recursive enumerability, and
extend the undecidability results of Hilbert’s Tenth Problem
and the equivalence to the identically zero function prob-
lem to the context of productiveness, demonstrating that both
problems are not only undecidable but also unprovable. We
also show that many predicates within the theory of real func-
tions, such as determining the continuity or differentiability
of an arbitrary function, are as hard as the equivalence to
the identically zero function problem through highly efficient
many-one reductions. Hence, for some classes of elementary
functions, these problems are also productive. Furthermore,
these efficient reductions preserve almost any level of com-
plexity classes, allowing us to potentially prove undecidabil-
ity results and hardness results simultaneously.

KEY WORDS

Undecidability · K-Productiveness · Computable Analysis ·
Computational Complexity

1 Introduction
Computable analysis is the study of mathematical structures,
such as real numbers or functions, in the context of com-
putability or algorithms. It attempts to translate continuous
structures to computable discrete structures that can be exam-
ined and analyzed on a computer. For example, by represent-
ing a function in some discrete way on a computer, we can
then take the derivative of the function or ask questions about
the domain and range, as we will look at later in this paper.
One of the major tasks that computable analysis focuses on
is the computability of real numbers, which involves search-
ing for algorithms that can approximate real numbers to any
degree. For example, a common approximation method is en-
coding a real number as a Cauchy sequence of rational num-
bers [1]. Despite real numbers being mathematically simple,
most real numbers are not computable. Another computable
analysis topic of study is the representation of real numbers.
Since most real numbers do not have finite representations,
computable analysis works to find different methods of rep-
resenting real numbers. These representations of real num-
bers can translate to computable functions, which involve de-
termining whether it is possible to algorithmically compute

a function to any precision similar to computing or approxi-
mating a real number to some precision. For all measures of
precision in this area, we compare the error and attempt to
get it below some threshold. In addition, computable analysis
also focuses on determining the complexity of certain math-
ematical tasks, such as determining the continuity or differ-
entiability of a function. In computable analysis, the word
‘complexity’ refers to the existence and hardness of a compu-
tation or algorithm for a given problem. Some recent research
in this area can be found in [2] and [3].
Computational complexity is an area that studies the amount
of resources which are needed for an algorithm to solve a
problem. While both computable analysis and computational
complexity are rooted in theoretical computer science, they
approach computation, real number representation, and pre-
cision very differently. While computable analysis focuses
on what can be computed and will compute real numbers and
functions to as many digits of precision as needed, compu-
tational complexity usually works with finite, discrete inputs,
focusing on the resources needed to do computations. In com-
putational complexity, precision is typically fixed, and the in-
put size changes while keeping precision the same. The fo-
cus is on resource bounds, such as time complexity and space
complexity. So, in computational complexity, the word ‘com-
plexity’ refers to the efficiency of a computation or algorithm.
However, using computational complexity theory to classify
these mathematical tasks is challenging. The continuous na-
ture of problems studied in computable analysis does not al-
ways lend itself neatly to the finite discrete framework em-
ployed by computational complexity. A significant amount
of research is being done to try to bridge these two gaps be-
tween the continuous nature of computable analysis and dis-
crete computational complexity, and this remains an open re-
search area. Some of this research can be found in [4] and
[5].
Our work will focus on showing that certain mathematical
tasks cannot be proved, as previous work has shown that an
algorithm cannot solve these tasks. A Turing machine is a
theoretical mathematical model of computation. It represents
an abstract computing device, which operates based on a set
of rules and states. It illustrates how a simple set of rules
can model any algorithmic process, given infinite time and
memory. In computable analysis, a Turing machine serves as
a mechanism for computing or analyzing various problems.
For example, a set is recursively enumerable if an algorithm

or Turing machine exists that can list its elements over time.
Additionally, A decision problem (yes/no problem) is decid-
able if there exists a Turing machine that halts on all inputs
and correctly decides the problem. A stronger form of unde-
cidability is productiveness, which implies that the problem is
not only undecidable but also unprovable. A productive set,
P, is too large to be recursively enumerable, and given any
recursively enumerable subset of P, you can always find an
element in P that is not in the subset.
Our work focuses on extending the undecidability results of
Hilbert’s Tenth Problem (HTP) and the equivalence to the
identically equal to zero function problem (denoted by “≡ 0”)
problems. HTP refers to the problem David Hilbert posed in
1900. He asked for a general algorithm that could find an
integer solution of a given Diophantine equation, with any
number of unknown quantities and with rational integral nu-
merical coefficients. In [6], Yuri Matiyasevich, building on
work by Martin Davis, Hilary Putnam, and Julia Robinson
in [7], proved that HTP is undecidable, therefore, there is no
general computational method to determine whether arbitrary
Diophantine equations have integer solutions.
Building on the undecidability results of HTP, Richardson
and Caviness show that the “≡ 0” problem is also undecid-
able for some classes of elementary functions over R in [8]
and [9]. This means there is no general algorithm to show
a certain elementary function is identically equal to 0 over
R. We examine the proofs of these results and improve un-
decidability results to productive results (a stronger form of
non-recursive enumerability).
Demonstrating that these problems are unprovable reveals
fundamental limits of algorithms in real function analysis.
Even with rigorous mathematical methods, we cannot devise
a general algorithm to decide these problems across certain
elementary functions, highlighting the boundaries of compu-
tational classification. Additionally, in mathematical logic,
productive sets provide a framework for exploring what can
be defined and computed within a formal system.
Furthermore, we show that the “≡ 0” problem is many-
one reducible to many mathematical tasks, such as testing
continuity certain elementary functions. This illustrates the
deep interconnections among the complexities of these prob-
lems. Moreover, these issues’ productiveness suggests that
many real-world applications involving functions may resist
straightforward algorithmic solutions.

2 Definitions and Preliminaries
In this section, we review many crucial formal definitions,
such as productiveness and Diophantine equations. Several
preliminary definitions and notations are also explained. This
will provide an overview of the definitions and notations
needed to develop our results. The reader is referred to [10]
for more information on productiveness and [6] for Diophan-
tine equations.
First, note that for any sets A and B, if A is many-one re-
ducible to B, we write A ≤m B. Many-one reducibility is
a way to compare the complexity of two problems by show-
ing that one can be transformed into the other using a spe-
cific kind of reduction. A ≤m B if there exists a computable

function f such that for every input x, x ∈ A if and only if
f(x) ∈ B.
We first introduce the definition and importance of produc-
tiveness, a stronger form of non-recursive enumerability. As
our work focuses on productive results, it is important to in-
troduce this idea first. Productive sets and their properties are
a standard topic in mathematical logic/recursion theory text-
books such as [11] and [12].
Definition 2.1 recalls the definition of a productive set on N,
as developed in [11] and [10].
Definition 2.1. Let W be an effective Gödel numbering of
the recursively enumerable sets. A set A of natural numbers
is called productive if there exists a total recursive function
f so that all i ∈ N if Wi ⊆ A, then f(i) ∈ A − Wi. The
function f is called the productive function for A.
From this definition, we can see that no productive set is re-
cursively enumerable. It is well-known that the set of all prov-
able sentences in an effective axiomatic system is always re-
cursively enumerable. So for any effective axiomatic system,
F is a set A of Gödel numbers of true sentences in F is pro-
ductive, then there is at least one element in A which is true
but cannot be proven in F . Moreover, there is an effective
procedure to produce such an element.
Let W be an effective Gödel numbering of the recursively
enumerable sets. K denotes the set {i ∈ N | i ∈ Wi}. K
denotes the set {i ∈ N | i /∈ Wi}.
Two well-known facts of productive sets (see [11]) that are
necessary for the development of our research are as follows:
Proposition 2.1. 1. K is productive.

2. For all A ⊆ N, A is productive if and only if K ≤m A.

Let Σ,∆ be two different finite alphabets such that both A ⊆
Σ∗ and A ⊆ ∆∗. It is easily seen that

• There exists a total recursive function F : N −→ Σ∗

such that K ≤m A (via F) if and only if there exists
a total recursive function G : N −→ ∆∗ such that K
≤m A (via G).

Proposition 2.2. [10] Let A ⊆ Σ∗, B ⊆ ∆∗ and A ≤m B.
Then the following holds:

1. If A is productive, then so is B.
2. If A is productive, then there exists a total recursive

function Ψ: Σ∗ → Σ∗, called a productive function for
A, such that for all x ∈ Σ∗,
L(Mx) ⊆ A =⇒ Ψ(x) ∈ A − L(Mx), where {Mx |
x ∈ Σ∗} is some Gödel-numbering of Turing machines
over alphabet Σ.

Additionally, we will introduce the definitions and theorems
needed that are related to Diophantine equations. These defi-
nitions will allow us to examine the proof of the undecidabil-
ity of HTP and “≡ 0” to extend the results to productiveness.
Definition 2.2. A Diophantine equation is an equation of the
form

D(x1,, xm) = 0,

where D is a polynomial with integer coefficients.

Definition 2.3. A family of Diophantine equations is defined
by an equation of the form

D(a1,an, x1,xm) = 0

where D is a polynomial with integer coefficients, the vari-
ables of which are split into two groups:

• the parameters a1,an;
• the unknowns x1,xm.

Additionally, we can consider the set M of all the n-tuples
< a1, . . . , an > for which our parametric equation (2.3) has
a solution, that is

< a1, . . . , an >∈ M

⇐⇒
∃x1 . . . xm{D(a1, . . . , an, x1, . . . , xm) = 0}.

An equivalence of the form (2) is called a Diophantine repre-
sentation of the set M.
We can also present the formal theorem showing the set of
false instances of HTP is undecidable as proven by Davis,
Putnam, Robinson, and Matiyasevich in [6].
Theorem 2.1. [6] DPRM-THEOREM Every recursively
enumerable set M of n-tuples of nonnegative integers has a
Diophantine representation, that is

< a1, . . . , an >

⇐⇒
∃x1 . . . xm{D(a1, . . . , an, x1, . . . , xm) = 0}

for some polynomial D with integer coefficients.

Corollary 2.1 follows from the previous definition.
Corollary 2.1.

K ≤m {D | D(x1, . . . , xn) is a Diophantine equation, and
D(x1, . . . , xn) has no solution in the natural numbers}.

Hence, the set of false instances of HTP is productive.

We will also introduce the notation of expressions represent-
ing functions. This provides a clear notation to represent our
expressions for the various real functions present in this work.
Let R be a set of expressions representing functions. All the
expressions are assumed to represent real, single-valued ele-
mentary functions of one or more real variables over some do-
main D. If F ∈ R, then F (x1,, xk) for k ≥ 1 is the func-
tion represented by F . It is supposed that given A,B ∈ R,
there is an efficient procedure for finding expressions in R to
represent the functions

(i) A(x1,, xm) +B(x1,, xn)

(ii) A(x1,, xm)−B(x1,, xn)

(iii) A(x1,, xm) ∗B(x1,, xn)

(iv) A(. . . ., B(x1,, xn),).
Additionally, A(x1,, xk) ≡ B(x1,, xk) means that
A(x1,, xk) and B(x1,, xk) are defined over the same
domain and equal wherever they are defined.
Finally, we can define the “≡ 0” problem.

Definition 2.4. Let R be a set of expressions. The equiva-
lence to the identically zero function problem (denoted by “≡
0”) is the problem of determining, given F ∈ R, over domain
D, whether F (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈
D.

With these definitions and preliminaries in place, we can be-
gin to develop our results in the context of HTP and the “≡ 0”
problem.

3 Equivalence to Identically 0 Function
Problem

Now, we know that the set of false instances of HTP is pro-
ductive. We will use this to prove that the set of functions
identically equal to 0 is also productive, through a series of
efficient many-one reductions.
First, we will define a subset class of expressions that will
allow us to prove our intended result. Note that these proofs
follow a very similar structure to the proofs in [8] and [9].

Theorem 3.1. Let R2 consist of the class of expressions gen-
erated by

(i) the rational numbers and π

(ii) the variables x1, . . . , xn

(iii) the operations of addition, multiplication, and composi-
tion, and

(iv) the sine function

Then,

K ≤m {F ∈ R2 | F (x1,, xn) ≥ 0 over [0,+∞]}.

Proof. First, we know that for any polynomial P (x1, . . . , xn)
with integral coefficients, deciding if there exists integers
a1,, an such that P (a1,, an) = 0 is productive.

So, we will construct a function F (x1,, xn) in
R2 such that there exists integers a1,, an such that
P (a1,, an) = 0 if and only if there exist real numbers
b1,, bn such that F (b1,, bn) < 0.
Construct F such that

F (x1, . . . , xn) =

(n+ 1)2[P 2(x1,xn) +
n∑

i=1

sin2 (πxi)K
2
i (x1,, xn)]− 1

Obviously with this equation, if there exists P (a1, . . . , an) =
0 with integers ai for 1 ≤ i ≤ n then F (a1, . . . , an) < 0.
This is due to the fact that sin2 (πxi) = 0 when xi is an
integer. So F (a1, . . . , an) = −1 < 0.

To show the converse, let there exist some b1,, bn such
that F (b1,bn) < 0. Also, choose ai to be the smallest
integer such that |ai − bi| ≤ 1/2. So,

(n+ 1)
2
[P 2(b1,bn) +

n∑
i=1

sin2 (πbi)K
2
i (b1,, bn)]− 1 < 0

That is,

P 2(b1,bn)+

n∑
i=1

sin2 (πbi)K
2
i (b1,, bn) < 1/(n+ 1)

2

Hence, P 2(b1,bn) < 1/(n + 1)2 < 1/(n + 1) and
| sin (πbi)|Ki(b1,, bn) < 1/(n+ 1) for all 1 ≤ i ≤ n.
Recall the mean value theorem says for the continuous inter-

val [a, b] and differentiable interval (a, b), there exists some c
such that

f ′(c) =
f(b)− f(a)

b− a
.

Extending this to n dimensions, we can say

P 2(a1,, an) ≤ P 2(b1,, bn) +
n∑

i=1

|ai − bi|
δ

δxi
P 2(c1,, cn)

where ci is between ai and bi. From the definition of Ki,
which is the dominating function, we can rewrite the equation
as

P 2(a1,, an) ≤ P 2(b1,, bn) +
n∑

i=1

|ai − bi|Ki(b1,, bn)

Now, we must prove that |ai − bi| ≤ | sin (πbi)|, knowing
|ai − bi| ≤ 1/2.
Consider bi ∈ [k, k + 1/2] where k is any integer. Then our
choice of ai (where ai should be the smallest integer such that
|ai−bi| ≤ 1/2), will always be integer k. Assume bi = k+j
where 0 ≤ j ≤ 1/2.
We want to prove |ai − bi| ≤ | sin (πbi)|. So the following
statements must be true:

|k − (k + j)| ≤ | sin (π(k + j))|

| − j| ≤ | sin (πk + πj)|
j ≤ | sin (πk) cos (πj) + sin (πj) cos (πk)|

Since k is an integer, sin (πk) = 0. Similarly, | cos (πk)| will
always be 1. So,

j ≤ | sin (πj)|
Now we will prove j ≤ sin (πj). That is 0 ≤ sin (πj)− j
for 0 ≤ j ≤ 1/2.
Define a function f(x) = sin (πx) − x. We must show
f(x) ≥ 0 for all 0 ≤ x ≤ 1/2.

f ′(x) = π cos (πx)− 1

Note that f ′(x) has one solution in the interval [0, 1/2], which
is approximately 0.397. Also, f ′(0) = π − 1 > 0 and
f ′(1/2) = 0 − 1 < 0. So, the function f(x) first increases
and then decreases, meaning the one solution is a maximum.
Checking the endpoints of the function f(0) = 0 and
f(1/2) = 1/2. So the function is positive in the entire in-
terval [0, 1/2]. So we have proved |ai − bi| ≤ | sin (πbi)|, for
any bi ∈ [k, k + 1/2] where k is any integer.
Now consider the case where bi ∈ (k + 1/2, k + 1] for some
integer k. In this case, our choice ai will be the integer k+1.
Assume bi = k + j where 1/2 < j ≤ 1.

We want to prove |ai − bi| ≤ | sin (πbi)|. So the following
statements must be true:

|k + 1− (k + j)| ≤ | sin (π(k + j))|
| − j + 1| ≤ | sin (πk + πj)|

j ≤ | sin (πk) cos (πj) + sin (πj) cos (πk)|
Since k is an integer, sin (πk) = 0. Similarly, | cos (πk)| will
always be 1. So,

| − j + 1| ≤ | sin (πj)|
So now we will prove −j + 1 ≤ sin (πj). That is 0 ≤
sin (πj) + j − 1 for 1/2 < j ≤ 1.
So define a function f(x) = sin (πx)+x−1. We must show
f(x) ≥ 0 for all 1/2 < x ≤ 1.

f ′(x) = π cos (πx) + 1

Note that f ′(x) has one solution in the interval [1/2, 1], which
is approximately 0.603. Also, f ′(1/2) = 1 > 0 and f ′(1) =
−π + 1 < 0. So, the function f(x) first increases and then
decreases, which means that the one solution is a maximum.
Checking the endpoints of the function f(1/2) = 1/2 and
f(1) = 0. So the function is positive in the entire interval
[1/2, 1]. So we have proved |ai − bi| ≤ | sin (πbi)|, for any
bi ∈ (k + 1/2, k + 1] where k is any integer.
So we have successfully proved |ai − bi| ≤ | sin (πbi)| for
our choice of ai
Since |ai − bi| ≤ | sin (πbi)|,

P 2(a1,, an) ≤ P 2(b1,, bn) +
n∑

i=1

| sin (πbi)|Ki(b1,, bn)

We know P 2(b1,, bn) < 1/(n + 1) and
| sin (πbi)|Ki(b1,, bn) < 1/(n + 1). Extending the
second term to match our equation, we have

n∑
i=1

| sin (πbi)|Ki(b1,, bn) <

n∑
i=1

1/(n+ 1)

n∑
i=1

| sin (πbi)|Ki(b1,, bn) < n/(n+ 1)

Therefore,

P 2(a1,, an) ≤ P 2(b1,, bn) +
n∑

i=1

| sin (πbi)|Ki(b1,, bn) < 1/(n+ 1) + n/(n+ 1)

< 1

If P 2(a1,, an) < 1, then P (a1,, an) = 0. So
there exists n natural numbers a1,, an such that
P (a1,, an) = 0. We have shown that if there exist real
numbers b1,, bn such that F (b1,, bn) < 0 then exists
integers a1,, an such that P (a1,, an) = 0.

Therefore, because we have shown both sides of the implica-
tion, we can say

K ≤m {F ∈ R2 | F (x1,, xn) ≥ 0 over [0,+∞]}.

Now, we must prove a stronger result, where the function F
is only of one variable. To do this, we will need a lemma
that allows us to reduce a function of multiple variables to a
function of one variable, proved in [8].
Lemma 3.1. [8] Let h(x) = x sin(x) and g(x) = x sin(x3).
Then for any real numbers a1, . . . , an, and any 0 < ϵ < 1,
there exists b > 0 such that

|h(b)− a1| < ϵ, |h(g(b))− a2| < ϵ, . . . ,

|h(g(. . . (g(b)) . . .))− an| < ϵ

Now, with this lemma defined, we will define the class of
expressions that we wish to prove the result for and prove our
result.
Theorem 3.2. Let R1 consist of the class of expressions gen-
erated by

(i) the rational numbers and π

(ii) the variable x

(iii) the operations of addition, multiplication, and composi-
tion, and

(iv) the sine and absolute value functions.
Then,

K ≤m {F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)}.
Hence, the problem “≡ 0” for R1 over R is undecidable.
Moreover, the set of true instances of the problem “≡ 0” is
productive.

Proof. So, from 3.1, we have

K ≤m {F ∈ R2 | F (x1,, xn) ≥ 0 over [0,+∞]}.
Now for any F ∈ R, we can effectively construct an expres-
sion G ∈ R such that

G(x1, . . . , xn) = F (x2
1, . . . , x

2
n).

If there exist n nonnegative real numbers b1, . . . , bn such
that F (b1, . . . , bn) < 0, then there exist n real numbers√
b1, . . . ,

√
bn such that G(

√
b1, . . . ,

√
bn) < 0. On the

other hand, if there are n real numbers b1, . . . , bn such that
G(b1, . . . , bn) < 0, clearly, there exist n nonnegative real
numbers b21, . . . , b

2
n such that F (b21, . . . , b

2
n) < 0.

That means we have
{F ∈ R2 | F (x1, . . . , xn) ≥ 0 over [0,+∞)} ≤m

{F ∈ R2 | F (x1, . . . , xn) ≥ 0 over (−∞,+∞)}.
For any function F (x1, . . . , xn) represented by an expression
in R, we can effectively construct an expression G ∈ R such
that

G(x) = F (h(x), h(g(x)), . . . , h(g(. . . (g(x)) . . .)))

where h(x) = x sin (x) and g(x) = x sin (x3).
We know there exists a real number b such that G(b) < 0 if
and only if there exists n real numbers a1, . . . , an such that
F (a1, . . . , an) < 0 by 3.1. So we have

{F ∈ R2 | F (x1, . . . , xn) ≥ 0 over (−∞,+∞)} ≤m

{F ∈ R2 | F (x) ≥ 0 over (−∞,+∞)}.
(1)

For any function F (x) represented by an expression in R, we
can effectively construct an expression G ∈ R1 such that

G(x) = |F (x)| − F (x)

If F (x) ≥ 0 for all x ∈ (−∞,+∞), then G(x) ≡ 0 over
(−∞,+∞). Otherwise, there exists a real number a such
that F (a) < 0. So G(a) = 2F (a) ̸= 0. Then we have

{F ∈ R2 | F (x) ≥ 0 over (−∞,+∞)} ≤m

{F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)}.

By the transitivity of the many-one reduction, we have

K ≤m {F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)}.

From a mathematical standpoint, this result truly captures
the limitations of computation and algorithms in real func-
tion analysis. The problem of identifying “≡ 0” is not only
undecidable but productive. We can systematically generate
unprovable functions, highlighting the sheer difficulty of ver-
ification.
These findings are incredibly significant as they address the
boundaries of algorithmic solvability in continuous mathe-
matics. It provides a glimpse into the structure and properties
of real functions, showcasing that even fundamental ideas like
equivalence to zero are resistant to algorithmic classification.
We will continue to examine these fundamental properties in
the next section, where we examine continuity and differen-
tiability.

4 Differentiation and Continuity Problem
We now extend our previous result to show that the differ-
entiability and continuity problem is at least as hard as the
“≡ 0” problem. This connection highlights the deep com-
plexity present in real-valued functions. By leveraging func-
tion constructions, we can establish an efficient reduction that
links these two problems. First, we will introduce some im-
portant functions and definitions.
Definition 4.1. A Dirichlet function is defined as

D(x) =

{
1 if x ∈ Q
0 if x /∈ Q

(2)

where Q is the set of rational numbers.
D(x) is nowhere continuous and, therefore, nowhere differ-
entiable. Despite its simple definition, D(x) exhibits ex-
tremely unstable behavior, making it a power tool for con-
structing complex arguments in the concept of continuity
and/or differentiability results.
Construct some function G(x) such that

G(x) = f(x) ∗D(x)

where D(x) is the Dirichlet function and f(x) is any equation
from some class of expressions R that includes multiplication
and one variable.
Then the “≡ 0” problem is many-one reducible to the conti-
nuity and differentiability problem for real value functions.

Theorem 4.1. Let R3 consist of the class of expressions gen-
erated by

(i) the rational numbers and π

(ii) the variable x

(iii) the operations of addition, multiplication, and composi-
tion, and

(iv) the sine, absolute value, and Dirichlet function

Then,

{F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)} ≤m

{F ∈ R3 | F (x) is continuous over (−∞,+∞)}

Hence, determining the continuity of a function in R3 over
R is undecidable. Moreover, the set of true instances of the
continuity problem is productive.
Also,

{F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)} ≤m

{F ∈ R3 | F (x) is differentiable over (−∞,+∞)}

Hence, determining the differentiability of a function in R3

over R is undecidable. Moreover, the set of true instances of
the differentiable problem is productive.

Proof. We know from the previous proof that

K ≤m {F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)}.

Now for any function F (x) represented by an expression in
R1, we can effectively construct an expression G ∈ R3 such
that

G(x) = D(x) ∗ F (x)

where D(x) is the Dirichlet function.
If F (x) ≡ 0, then G(x) ≡ 0 and, therefore, is continuous
and differentiable. On the other hand, if F (x) ̸≡ 0, then
at some point, F (x) ̸= 0. At that point, G(x) will not be
continuous or differentiable as D(x) is nowhere continuous
and differentiable. So we have

{F ∈ R3 | F (x) ≡ 0 over (−∞,+∞)} ≤m

{F ∈ R3 | F (x) is continuous over (−∞,+∞)}

and

{F ∈ R3 | F (x) ≡ 0 over (−∞,+∞)} ≤m

{F ∈ R3 | F (x) is differentiable over (−∞,+∞)}

Similarly to the “≡ 0” problem, this result has significant
implications in the world of real-value functions. It again
highlights the limitations of algorithms and computational ap-
proaches to function analysis and reinforces the complexity of
real analysis in logic. This further pushes forward our argu-
ment that even fundamental properties of simple mathemat-
ical functions cannot be algorithmically determined, empha-
sizing the need for alternate mathematical systems to classify
functions.

5 Other Real Function Problems
The result of productiveness for the “≡ 0” problem is an ex-
tremely strong result, as a function being identically equal to
0 allows the creation and solution of many other real function
problems. We can create connections between many differ-
ent real function problems that may seem unrelated. In this
section, we investigate two of these problems: determining
whether a function takes on zero and determining whether a
function is surjective. By exploring these problems, we show
that they are as hard as the “≡ 0” problem and demonstrate
the interconnection between the complexities of real-value
function problems.
We begin proving that determining whether a function ever
takes on the value zero is as hard as the identically equal to
zero problem.
We can construct some function G(x) such that

G(x) = 1− f(x)

f(x)

where f(x) is any equation from the class of expressions de-
fined in 3.2.
Theorem 5.1. Let R4 consist of the class of expressions gen-
erated by

(i) the rational numbers and π

(ii) the variable x

(iii) the operations of addition, multiplication, division, and
composition, and

(iv) the sine and absolute value functions
Then,
{F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)} ≤m

{F ∈ R4 | F (x) is nowhere defined over (−∞,+∞)}.
and

{F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)} ≤m

{F ∈ R4 | F (x) never takes on the value zero
over (−∞,+∞)}.

Proof. We know from the previous proof that
K ≤m {F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)}.

Now for any function F (x) represented by an expression in
R1, we can effectively construct an expression G ∈ R4 such
that

G(x) = 1− F (x)

F (x)
.

If F (x) ≡ 0, then G(x) is nowhere defined. Also, G(x) never
takes on the value zero. If F (x) ̸≡ 0, then at some point
F (x) ̸= 0. Therefore, at that point, G(x) will be defined.
Also, G(x) = 0 as F (x)

F (x) = 1. So we have

{F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)} ≤m

{F ∈ R4 | F (x) is nowhere defined over (−∞,+∞)}.
and

{F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)} ≤m

{F ∈ R4 | F (x) never takes on the value zero
over (−∞,+∞)}.

This problem of determining where a function takes on the
value zero is not only computationally difficult but also im-
portant in many areas of mathematics and computer science.
Areas such as optimization and numerical analysis, where
finding a solution to an equation involves checking whether
a function ever attains the value 0. The complexity of this
problem suggests that many real-world applications involv-
ing functions may not be easily solved using algorithms.
We can now prove that determining whether a function is sur-
jective is many-one reducible to the “≡ 0” problem.
We can construct some function G(x, y) such that

G(x, y) = f(x) ∗ y + sin(y)
where f(x) is any equation from the class of expressions de-
fined in 3.2.
Reducing this function to one variable will allow us to relate
the identically equal to zero problem to the surjective problem
through many-one reductions.
In order to prove our desired result, first recall a theorem
proved in [8],
Theorem 5.2. Let h(w) = wsin(w), g(w) = wsin(w3). For
any x1 and x2 and any δ > 0, there is a w > 0 so that

|h(w)− x1| < δ, g(w) = x2.

Now, we can prove our result.
Theorem 5.3. For the class of expressions R1 (defined in
3.2), then

{F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)} ≤m

{F ∈ R1 | F (x) is not surjective over (−∞,+∞)}
Proof. We know from the previous proof that

K ≤m {F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)}.
Now for any function F (x) represented by an expression in
R, we can effectively construct an expression G ∈ R2 such
that

G(x, y) = F (x) ∗ y + sin(y)
If F (x) ≡ 0, then G(x, y) is not surjective. If F (x) ̸≡ 0, then
there is somewhere where F (x) ̸= 0 so G(x, y) is surjective.
That is
{F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)} ≤m

{F ∈ R2 | F (x, y) is not surjective over (−∞,+∞)}
Now, to obtain F (x, y) in terms of one variable, we can use
Theorem 5.2.
So, in our function G(x, y), we let x = h(w) and y = g(w).
This allows us to have a function of only one variable.

G(x, y) = F (w) = F (h(w)) ∗ g(w) + sin(g(w)).

{F ∈ R1 | F (x) ≡ 0 over (−∞,+∞)} ≤m

{F ∈ R1 | F (x) is not surjective over (−∞,+∞)}

The complexity of the surjective problem further emphasizes
the difficulty in computationally determining properties of
real-value functions and how interconnected different con-
cepts in mathematics are. These results truly emphasize the
need for a careful mathematical understanding of problems to
find solutions rather than forceful computation.

6 Conclusion
We introduced the concept of productiveness, proving the set
of false instances of HTP is productive. Building on the prior
work of [8] and [9], we also showed that “≡ 0” problem is
productive for some classes of elementary functions over R.
Additionally we proved that “≡ 0” problem is many-one re-
ducible to many predicates in the theory of real functions such
as determining continuity, differentiability and surjectivity of
a function. Due to the highly efficient reductions, these rel-
ative complexity results preserve almost every level of com-
plexity in computation complexity theory. In the future, we
can consider extending the results of the “≡ 0” problem to
different domains, as currently it is productive in the set of all
real numbers. We may also consider looking at the hardness
of these problems, not just the computability.

References
[1] K. Weihrauch, Computable Analysis: An Introduction.

Berlin, Heidelberg: Springer, 2000.
[2] F. Steinberg, L. Théry, and H. Thies, “Computable anal-

ysis and notions of continuity in coq,” Log. Methods
Comput. Sci., vol. 17, no. 2, 2019.

[3] W. Calvert, K. Kramer, and R. Miller, “Noncom-
putable functions in the blum-shub-smale model,” Log-
ical Methods in Computer Science, vol. 7, no. 2, 2011.

[4] U. Berger, J. N. Franklin, F. Manea, and A. Pauly, Revo-
lutions and Revelations in Computability: 18th Confer-
ence on Computability in Europe, CiE 2022, Swansea,
UK, July 11–15, 2022, Proceedings. Springer Nature,
2022, vol. 13359.

[5] P. H. Vasco Brattka, Ed., Handbook of Computability
and Complexity in Analysis, ser. Theory and Applica-
tions of Computability. Springer Cham, 2021.

[6] Y. Matiyasevich, “Hilbert’s tenth problem: What was
done and what is to be done,” American Mathematical
Society, 2000.

[7] M. Davis, Computability and Unsolvability. New
York: Dover Publications, Inc., 1982, originally pub-
lished by McGraw-Hill Book Company, New York,
1958. Dover edition includes a new preface and an ap-
pendix, “Hilbert’s Tenth Problem Is Unsolvable,” from
The American Mathematical Monthly, 1973.

[8] D. Richardson, “Some undecidable problems involving
elementary functions of a real variable,” The Journal of
Symbolic Logic, vol. 33, no. 4, 1968.

[9] B. Caviness, “On canonical forms and simplification,”
Journal of the Association for Computing Machinery,
vol. 17, no. 2, 1970.

[10] J. Xie and H. B. H. III, “On the undecidability and de-
scriptional complexity of synchronized regular expres-
sions,” Acta Informatica, vol. 60, 2023.

[11] H. Rogers, Jr., Theory of Recursive Functions and Ef-
fective Computability. Cambridge, MA, USA: MIT
Press, 1987.

[12] R. I. Soare, Recursively Enumerable Sets and Degrees.
New York, NY, USA: Springer-Verlag New York, Inc.,
1987.

CONSOLIDATING LECTURE NOTES AND COMPUTING ENVIRONMENT THROUGH
CONTAINERIZATION TO SUPPORT PARALLEL COMPUTING EDUCATION

Huy D. Nguyen1, Bao G. Ngo1, Tejas Karusala2, Michael Collins3, and Linh B. Ngo3

1Oberlin College, 2Downingtown East Highschool, 3West Chester University
{hnguye15,bngo}@oberlin.edu,tkarusala01@student.dasd.org,{mc965348,lngo}@wcupa.edu

ABSTRACT

Teaching parallel and distributed computing (PDC) requires
consistent HPC resources, which can be challenging for in-
stitutions with limited on-site hardware. We present PDCP
(Parallel and Distributed Computing Platform), a container-
based system built on Docker and Docker Compose that pro-
vides a standardized environment for shared- and distributed-
memory programming. PDCP consolidates lecture materials,
course assignments, and HPC infrastructure into an easily
deployable package, eliminating the overhead of switching
between multiple computational platforms. Through multi-
architecture images and resource allocation best practices,
PDCP supports a variety of hardware, including ARM-based
devices. Its flexible Docker Compose configuration enables
the quick creation of multi-node clusters that demonstrate
scalability concepts, even on personal laptops. Experiments
show near-linear speedups for MPI-based trapezoid computa-
tions up to available cores, and real-world classroom deploy-
ments confirm that students can focus on learning rather than
configuring HPC environments. Future directions include in-
tegrating scheduling frameworks and migrating PDCP to Ku-
bernetes for broader deployment.

1 Introduction

Teaching parallel and distributed computing (PDC) with-
out onsite hardware resources is a significant challenge, es-
pecially when actual coding activities in assignment or in-
class examples are involved. At university A, in the past
three years, we have offered our PDC course every Spring
semester. Each time, a new computing platform was intro-
duced to students. In the first offering, the course focused
primarily on shared-memory programming, and our depart-
ment server was sufficient. In the second offering, Message
Passing Interface (MPI) contents were added, and a multi-
node cluster was necessary to demonstrate the communica-
tion overhead and performance improvement. We switched
to XSEDE, a federal computing resource that was available
all U.S. academic research and education [1]. One limitation
of XSEDE is the additional required knowledge on to interact
with a shared high-performance computing resource. This in-
cludes learning to write submit script and to become relatively

well-versed in working with Linux, which were not typically
required for students in our PDC class. Furthermore, XSEDE
was heavily utilized, and students often had to wait to get
on a resource allocation. This made in-class demonstration
and hands-on activities not possible. In the third offering,
we switched to another cloud-based federal resource called
CloudLab [2]. Using previous work in dynamically launching
small high-performance computing (HPC) cluster [3], each
student now had the ability to launch their own HPC environ-
ment. No wait time for resource was needed, and students
were able to run their programs directly. This time, the limi-
tation was due to the long set up time (45 minutes to one hour
to completely deploy an HPC) and to the ephemeral nature of
these environments (they only lasted at most 16 hours and all
data were removed afterward). Having to change from one
computing environment to another creates overhead in modi-
fying lecture materials, assignment descriptions, and grading
scripts. It also introduces potential new technical issues into
the mix. In this case, without the financial and technical mean
to have an on-site HPC cluster, it is important to identify a
long-term solution for providing both instructor and students
with a stable computing environment for teaching PDC.

In this work, we propose to address this issue by develop-
ing a container-based platform called PDCP (Parallel and
Distributed Computing Platform) to support PDC education.
This platform provides a virtual environment in which stu-
dents can access the same learning environment for shared
and distributed memory programming model. The platform
can be deployed on a small 4-core laptop, but can also be
scaled up across 16-core desktops or high-end laptops. Ini-
tial test deployment shows that the infrastructure works for
a class of 24 students with no additional technical issues for
the instructor. The remainder of the paper is organized as
follows. Section 2 reviews previous work on the topic of cre-
ating a suitable computational learning environment for PDC
topics. Section 3 describes the infrastructure in detail. Sec-
tion 4 discusses the experimental deployment and the actual
in-class deployment of the infrastructure. Finally, Section 5
concludes the paper and discusses future work.

2 Literature Survey

There have been different approaches in developing and de-
ploying local computing clusters that can be used to teach
basic PDC concepts. An early solution is to boot a tempo-
rary networked computer lab into a pre-configured distributed
computing environment [4]. This solution was further ex-
tended in combination with a small-scale multi-processor
build-out hardware kit to create inexpensive and portable mini
clusters for education [5]. In the early 2010s, advances in vir-
tualization technologies led to solutions that support the cre-
ation of virtual computing clusters within existing computer
laboratories. These clusters can scale across all resources [6]
or contain many mini clusters for learning at individual levels
[7]. Without leveraging existing on-premise resources, reduc-
tion in hardware costs leads to approaches that lean toward
the development of personal- and classroom-scale computing
clusters. The costs of these cluster can range from approx-
imately $3,000 [8] to $200 [9]. In both scenarios, they also
require additional administrative effort, which could either be
facilitated by student teams, supported by technical staff or
require time effort from the instructors. This presents chal-
lenges to institutions with limited personnel resources, teach-
ing responsibilities are high, and typical students are not pre-
pared to take up advanced Linux system administration tasks.

In 2015, the availability of CloudLab [2], a federal large-
scale cloud computing resource, provided more options to ad-
dress the above issues. It is possible to automate the deploy-
ment of large-scale computing cluster for individual students
on CloudLab to teach PDC topics such as high-performance
computing [3], cloud computing [10], and big data engineer-
ing [11]. However, we has observed one issue with these ap-
proaches, which is the gradual increases of CloudLab utiliza-
tion and the eventual degrading of hardware on this 10-year-
old resource, leading to significantly longer wait time for stu-
dents. Another observation is that students will be cut off
from institutional and federal resources when they finish tak-
ing the class or graduate. This limits the ability to self study
beyond the scope and duration of the class.

As centralized institutional and federal resources face the is-
sues of hardware degrading and increased utilization through
participation, individual computers (laptop and desktop) have
also seen gradual improvement in performance while pricing
remain relatively consistent. In the 2010s, a low-end laptop
($200 to $400 range) would have had a dual-core CPU and
2-3GB of RAM. Nowaway, a similarly priced laptop would
boast 8GB of RAM and a 4-core CPU (or even 8 if we count
Intel’s hyper-threading). This has made the building of a PDC
computing environment inside containers and deploying it
on personal computing devices a reality. Containerization of
PDC applications is not a new concept. This has been done
to support the growing complexity of scientific applications
that can interfere with the aspects of system administration
of PDC infrastructures [12; 13; 14]. The need to support on-
demand and cloud-bursting workloads leads to solutions that
dynamically deploy entire systems including their schedulers

on external cloud resources [15]. For educational purposes,
containerization of an entire PDC infrastructure remains lim-
ited. The most notable setup is the HPC Toolset Tutorial,
developed by University of Buffalo as part of an introduc-
tory workshop to various tools for HPC system administration
[16]. The HPC Toolset provided a Docker Compose recipe to
build and deploy a PDC infrastructure that includes a login
node with scheduler, two compute nodes, a LDAP node that
hosts user login information, a XDMoD (Metrics on Demand)
node that supports performance evaluation dashboards [17],
and a ColdFront node that enables research groups to manage
their own resource allocation [18]. While HPC Toolset pro-
vides a comprehensive environment for HPC system manage-
ment and administration study, the complexity of this toolset
makes it unsuitable for college-level PDC concepts. The en-
tire infrastructure takes up approximately 20GB of storage
when deployed and requires closer to 8 physical CPU cores
to ensure smooth operation. It also lacks both application
software (GCC compilers for OpenMP and the MPI library
itself) and a shared directory to support parallel programming
communication.

Leveraging HPC Toolset, we setup a new environment, the
PDC Platform (PDCP), to support teaching of PDC topics,
more specifically parallel programming for shared and dis-
tributed memory. PDCP is equipped with all necessary soft-
ware (gcc, MPI) and utilities (shared storage, passwordless
SSH connection, and browser-based code editor and terminal
access). At the same time, PDCP is also optimized to ensure
reasonable performance and minimal storage consumption on
smaller personal computing devices.

3 Development

The PDCP is developed using Docker images and deployed
using Docker Compose. The architectural and deployment
diagram is shown in Figure 1. Two Docker images form the
basis of all the running containers in a deployment: base and
master.

3.1 Building Images

The base image is built on top of a RockyLinux 9.3 image
layer and contains the common software and dependencies
that are needed for a compute node in a traditional HPC
setting. These include basic gcc/++ compilers, OpenMPI,
Python, and SSH server. The installation and configuration
of the software packages are automated through an external
script. This script was copied into the image and run dur-
ing build time. The compilers, Python, and SSH are installed
using RockyLinux’s dnf tool. However, OpenMPI was man-
ually compiled from source and installed into a custom loca-
tion. This is to ensure that OpenMPI can take advantage of
Docker’s ability to fully expose the compute containers to the
host machine’s CPU architecture. A user account called stu-
dent is created. This is so that a placeholder directory inside

the image for /home/student is created. An actual /home/stu-
dent directory containing pre-generated SSH keys and config-
uration, extensions, and password for code server are copied
into the base image at /opt/home/student.

The master image is built upon a layer of base image. The
master image contains additional software packages that fa-
cilitate means for users (faculty and students) to easily access
PDCP via browser (code-server) and libraries to enable fac-
ulty to edit and build interactive lectures using jupyter-book
[19]. An entrypoint.sh script is added to /usr/local/bin and set
up as an entrypoint for the master container.

The image building process is laid out in a Docker Compose
YAML file. It specifies the subdirectories containing the rel-
evant Dockerfiles and additional support files as well as the
tags for the images.

3.2 Deploying Platform

Once the images are built, PCDP can be deployed using
Docker Compose. The head container, launched from the
master image, is to be deployed first. When head is de-
ployed, an external directory is used on the host machine to
mount and map to the /home/student directory inside the con-
tainer. This directory was originally created and remained
empty during the initial build. The external host directory
will override this empty path whenever the container is run,
ensuring that the data is seamlessly shared between the con-
tainer and the host. This allows users to easily access the
content created by work done inside PDCP.

Both base and master carry their own entrypoint.sh scripts
with different contents. The entrypoint.sh script on base will
start the SSH server to allow SSH connection to all compute
containers. In addition, the entrypoint.sh script on image will
do the following:

• Copy the content of /opt/home/student into the actual
home directory of the student account. As this directory
is mapped to a directory on host storage, which is then
mounted on all other containers, this effectively creates
a shared home directory and enables passwordless SSH
connections among all the containers.

• Launch a code server with a predefined port and pass-
word, as stored in the configuration file. The port is ex-
posed and assigned to a set of ports on the host computer,
specified in the docker-compose.yaml file.

By default, the docker-compose.yml file contains the build
and deploy instructions for one head node (container) and
two compute nodes (containers). Each container can be con-
figured with the number of computing cores and the size of
memory available. The number of compute containers can
be arbitrarily increased simply by copying an existing com-
pute segment and modifying (increasing) the counting identi-
fiers in the segment. On a single computing device, the num-
ber of compute containers should be carefully calculated to

match with the total available physical cores, after account-
ing for cores allocated to support the host machine’s operating
system. The docker-compose.yml can be used to deploy the
platform across multiple nodes by leveraging Docker Swarm
[20].

A successful deployment provides users with browser access
to PDCP in the form of a code server interface. This in-
cludes file editing and terminal access similar to a normal en-
vironment with a traditional high-performance environment.
For instructors, there are available configurations within the
docker-compose.yml file to mount lecture materials. This en-
sures that all code examples and assignments listed for the
course can be tested within PDCP prior to being distributed
to students. While it is possible to make the lecture materials
part of PDCP itself, we have decided not to out of consid-
eration for potential copyrighted materials that can only be
presented to students indirectly via lectures.

4 Discussion

This section addresses the challenges encountered during the
deployment of the PDCP system and offers recommendations
based on our experiences. We focus on cross-platform com-
patibility issues and best practices for containerized PDC en-
vironments.

4.1 Cross-Platform Compatibility

The initial version of PCDP uses a default x86 setting for
Docker image building. This creates a problem when PCDP
is built on different platforms. In a preliminary test on the
MacBook with Apple Silicon, the platform did not work well
with the ARM64 architecture, which caused constant warn-
ings. The building process was very slow and often failed for
no specific reason. The recovery process frequently requires
deletion of the cache data and restart. Even in the case of a
successful build, containers can randomly fail during deploy-
ment. To address this issue, we update the Dockerfiles with
the following:

FROM −− p l a t f o r m = l i n u x / amd64 \
r o c k y l i n u x : 9 . 3 − minimal AS s t a g e −amd64

FROM −− p l a t f o r m = l i n u x / arm64 / v8 \
r o c k y l i n u x : 9 . 3 − minimal AS s t a g e −arm64

Without the –platform flag, Docker tries to use a predefined
base image for the x86 architecture, thus creating compat-
ibility problems when it runs on ARM64 systems such the
MacOS on Apple Silicon. By specifying both architectures,
Docker now has a choice can choose a base image that is
suitable to the host system. As a result, such conflicts are
avoided.

The deployment to Linux-based and Windows-based ma-

Figure 1: Architectural diagram of the PDCE platform

chines was straight forward with no compatibility issues for
both versions of the base Dockerfiles. Linux natively sup-
ported Docker without the extra virtualization layers found in
MacOS and Windows, providing better resource management
and quicker builds. These experiences demonstrated that
PDCP can be deployed across platforms once architecture-
specific considerations are put in place. in containerized
educational environments, particularly when deploying on
ARM64-based systems.

4.2 Deployment Best Practices

PDCP has been deployed and utilized in both experimental
and in-class testing. From an experimental perspective, the
platform was deployed on the authors’ personal computing
devices including one Windows desktop, one low-end Win-
dows laptop, one Linux laptop, one high-end Windows lap-
top, one Macbook Air, and one Macbook Pro. At the be-
ginning of Spring 2025, PDCP is used in a Parallel and Dis-
tributed Programming class with 25 students. All students
use their personal laptop to deploy the platform with no de-
ployment or execution issue. Based on this experience, we
identified the following best practices to implement and de-
ploy PDCP in educational settings. All code examples from
the lectures up to this point in the semester have been usable
by students as is.

• Multi-architecture Image Building: Define platform
targets explicitly in Dockerfiles to accommodate multi-
ple architectures. This provides compatibility with the

wide variety of hardware instructors students will most
likely use.

• Resource Allocation: Set Docker’s resource constraints
appropriately prior to image building. This prevents un-
wanted utilization spikes that could interfere with the
host machine’s normal operations, leading to freezes and
eventually crashes.

• Documentation: Keep platform-specific setup guides
that deal with the unique challenges of each operating
system. It reduces support costs drastically by docu-
menting known problems and fixes.

These best practices greatly improve the usability and con-
sistency of containerized PDC teaching environments. By
resolving architecture compatibility, resource management,
data persistence, and documentation requirements in ad-
vance, instructors can expose students to a cleaner experience
that concentrates on learning parallel computing concepts in-
stead of debugging environment problems. These guidelines
provide a starting point for institutions and individuals want-
ing to pursue comparable containerization strategies to PDC
education.

4.3 Performance Evaluation

It is clear that a containerized HPC environment running on a
single personal computing device will not have the same per-
formance as its production counterparts. However, we want
to demonstrate that even on a single laptop, this environment

Figure 2: Runtime scalability of trapezoid calculation on high-end
computing devices

Cores Windows 1 Mac 1 Windows 2 Mac 2
1 7.9 4.599 5.278 5.669
2 4.1 2.319 2.663 2.891
4 2.1 2.458 1.42 2.923
6 3.01 2.726 2.21 3.269
8 3.18 2.89 2.18 3.357

Table 1: Scaling of runtimes in seconds over increased total core
counts across different personal computing devices

can exhibit scalability, an important attribute that we wish stu-
dents to observe when they learn about PDC concepts. In this
evaluation, we use the following personal computing devices.

• Windows 1: Desktop PC with 32 GB RAM, 8-Core
AMD Ryzen 7 3.6 GHz

• Windows 2: Laptop PC with 16 GB RAM, 14-core Intel
i7-12700H 2.30GHz

• Mac 1: Macbook Pro with 24 GB RAM, 10-core Apple
M4 (4 performance cores at 4.5 GHz and 6 efficiency
cores at 2.9 GHz).

• Mac 2: Macbook Air with 8 GB RAM, 8-core Apple M1
(4 performance cores at 3.2 GHz and 4 efficiency cores
at 2.0 GHz).

The experiment implements a simple integral estimation in
C/MPI using the trapezoid methods. The calculated area un-
der the curve is for the function y = x4 over the range of 0
to 10. This area is estimated using 10, 000, 000, 000 trape-
zoids. Using PDCP, we deploy a 5-node infrastructure: one
head container and four compute containers. Each container
is configured with 2 GB of memory and 2 cores. Prior to the
experiment, all non-critical applications are terminated, and
it is confirmed that the platforms are running with a CPU uti-
lization below 10%. Table 1 shows the runtime measurements
of the experiment. On the Mac 1 platform, almost perfect
scalability can be seen as the number of cores increase from

1 to 2. However, the runtimes plateau out and grow slightly
worse as the number of cores increases from 2 to 4, 6, and
then 8. This is likely due to the higher single-core perfor-
mance of the Mac M4’s performance cores, therefore making
the communication overhead more noticeable faster. On the
Windows 1 platform, almost perfect scalability can be seen
with the core count sequence of 1, 2, and 4. The same per-
formance stagnation is observed only for 6 and 8 cores. This
is consistent with the hardware configuration (physical core
counts) of the devices used in the experiment. The perfor-
mance values of Windows 2 and Mac 2 devices demonstrate
the consistency in scaling behaviors of PDCP across two dif-
ferent CPU architectures: Mac ARM and x86 64 (AMD and
Intel). This is consistent with the visualization shown in Fig-
ure 2.

5 Conclusion

The deployment experience and performance evaluation dis-
cussed in the previous chapter have demonstrated the practi-
cality and usability of PDCP in practical classroom settings.
This is possible through advances in virtualization technolo-
gies and improvement in available hardware resources on per-
sonal computing devices.

As part of our future work, we intend to improve upon PDCP
architectural design by adding additional components includ-
ing a scheduler and a shared parallel file system. We will
also branch out to convert docker-compose.yml into a Ku-
bernetes service deployment YAML. This is so that PDCP’s
cross-platform capability can be extended to existing cloud
infrastructure and not limited to just personal computing de-
vices. Furthermore, building on the concept of PDCP, we
will explore the idea of a general interactive-book framework,
where the back-end components (similar to PDCP’s compute
containers) can be swapped out and replaced with relevant
containers, such as those supporting database management,
operating systems, big data engineering, and web develop-
ment courses, to name a few.

The GitHub containing all the source codes for PDCP can be
found at REDACTED.

References

[1] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Pe-
terson, et al., Xsede: accelerating scientific discovery, Com-
puting in science & engineering, 16(5):(2014), 62–74.

[2] R. Ricci, E. Eide, C. Team, Introducing cloudlab: Sci-
entific infrastructure for advancing cloud architectures and
applications, ; login:: the magazine of USENIX & SAGE,
39(6):(2014), 36–38.

[3] L. B. Ngo, J. Kilgannon, Virtual cluster for hpc
education, Journal of Computing Sciences in Colleges,
36(3):(2020), 20–30.
[4] S. M. Diesburg, P. A. Gray, D. Joiner, High performance
computing environments without the fuss: the bootable clus-
ter cd, in 19th IEEE International Parallel and Distributed
Processing Symposium, pages 8–pp (IEEE, 2005).
[5] I. Babic, A. Weeden, M. Ludin, S. Thompson, C. Peck,
K. Muterspaw, A. F. Gibbon, J. Houchins, T. Murphy, Lit-
tlefe and bccd as a successful on-ramp to hpc, in Proceedings
of the 2014 Annual Conference on Extreme Science and En-
gineering Discovery Environment, page 73 (ACM, 2014).
[6] E. Shoop, R. Brown, E. Biggers, M. Kane, D. Lin,
M. Warner, Virtual clusters for parallel and distributed educa-
tion, in Proceedings of the 43rd ACM technical symposium on
Computer Science Education, pages 517–522 (ACM, 2012).
[7] P. Marshall, M. Oberg, N. Rini, T. Voran, M. Woitaszek,
Virtual clusters for hands-on linux cluster construction edu-
cation, in Proc. of the 11th LCI International Conference on
High-Performance Clustered Computing (2010).
[8] J. C. Adams, T. H. Brom, Microwulf: a beowulf cluster
for every desk, ACM SIGCSE Bulletin, 40(1):(2008), 121–
125.
[9] D. Toth, A portable cluster for each student, in 2014
IEEE International Parallel & Distributed Processing Sym-
posium Workshops, pages 1130–1134 (IEEE, 2014).
[10] L. B. Ngo, Experience in teaching cloud computing with
a project-based approach, Journal of Computing Sciences in
Colleges, 38(3):(2022), 107–119.
[11] L. B. Ngo, H. Bui, Sustainable and scalable setup for
teaching big data computing, Journal of Computational Sci-
ence, 14(1).
[12] R. Keller Tesser, E. Borin, Containers in hpc: a survey,
The Journal of Supercomputing, 79(5):(2023), 5759–5827.
[13] N. Zhou, H. Zhou, D. Hoppe, Containerization for
high performance computing systems: Survey and prospects,
IEEE Transactions on Software Engineering, 49(4):(2022),
2722–2740.
[14] S. Abraham, A. K. Paul, R. I. S. Khan, A. R. Butt, On
the use of containers in high performance computing environ-
ments, in 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD), pages 284–293 (IEEE, 2020).
[15] C. Kozanitis, A. Bilas, Virtual clusters: Isolated, con-
tainerized hpc environments in kubernetes, in High Perfor-
mance Computing. ISC High Performance 2022 International
Workshops: Hamburg, Germany, May 29–June 2, 2022, Re-
vised Selected Papers, volume 13387, page 347 (Springer Na-
ture, 2023).
[16] University of Buffalo and Ohio Supercomputing Center,
HPC Toolset Tutorial,
https://github.com/ubccr/hpc-toolset-tutorial, 2025.
[17] J. T. Palmer, S. M. Gallo, T. R. Furlani, M. D. Jones,
R. L. DeLeon, J. P. White, N. Simakov, A. K. Patra, J. Sper-
hac, T. Yearke, et al., Open xdmod: A tool for the comprehen-

sive management of high-performance computing resources,
Computing in Science & Engineering, 17(4):(2015), 52–62.
[18] A. Bruno, D. Sajdak, Coldfront: Resource allocation
management system, in Practice and Experience in Advanced
Research Computing 2021: Evolution Across All Dimensions,
pages 1–5 (2021).
[19] E. Chen, M. Asta, Using jupyter tools to design an inter-
active textbook to guide undergraduate research in materials
informatics, 2022.
[20] N. Naik, Building a virtual system of systems using
docker swarm in multiple clouds, in 2016 IEEE International
Symposium on Systems Engineering (ISSE), pages 1–3 (IEEE,
2016).

Efficiency Transition in Matrix Multiplication: Hybrid Compilation Paths Outperform
Traditional Approaches at Scale

ABSTRACT
There are potential benefits to performance by bypassing
the traditional compilation steps of translating high-level
code into machine code. By analyzing the theory of
skipping the assembly phase, we aim to discover if this
approach can lead to faster execution. The analysis
considers compiler design, machine code generation
techniques, and the limitations of current compilers. The
findings suggest that, while direct machine code generation
(compiling C→assembly→machine code) is feasible, its
practicality depends on problem scale and domain-specific
requirements. For large matrices (1500×1500), assembly-
derived code achieved a 4.94% speed improvement over
traditional compilation, demonstrating scalability
advantages.

KEY WORDS
Matrix Multiplication, Performance Variability, Execution
Performance, Computational Efficiency.

1. Introduction

Matrix multiplication is a cornerstone operation in
computational mathematics. It has vast applications
spanning fields from computer graphics and machine
learning to scientific simulations [1]. The performance of
matrix multiplication algorithms impacts the efficiency of
countless systems making its optimization a pertinent focus
in high-performance computing research.

Traditional implementations of matrix multiplication
algorithms are in the time complexity of O(n3) which
become increasingly expensive as the matrix dimensions
grow. While there have been algorithmic improvements,
such as Strassen’s algorithm (O(n2.807)) [2] and
Coppersmith-Winograd algorithm (O(n2.376)) [3], they
often have excessive overhead for practical matrix sizes.
Subsequently, much research has been focused on
optimizing the standard algorithm through various
techniques such as loop unrolling, tiling, vectorization, and
parallelization.

While algorithmic advances are critical, the compilation
process itself may introduce performance bottlenecks that
remain underexplored. Previous research has studied
optimization techniques for matrix multiplication, focusing
on algorithmic improvements (Strassen, Coppersmith-
Winograd), compiler optimizations, and hardware-specific
tuning. However, little attention has been given to
understanding the fundamental performance differences
between code that is compiled directly to machine code

versus code that is directly translated to assembly and then
compiled, especially when optimizations are disabled to
isolate compilation-pathway effects.

The question of whether a compiler’s conversion to
assembly can introduce inefficiencies is relevant as we
consider the future of compiler design [4]. Some
researchers have suggested that direct machine code
generation from high-level languages might offer
performance benefits by removing these intermediate steps
[5]. On the contrary, others have suggested
 that assembly is needed for code improvements that would
be difficult to achieve.

This study isolates compilation effects by comparing
unoptimized C code to it unoptimized assembly
counterpart. By comparing the execution times across
varying matrices dimensions (500×500, 1000×1000,
1500×1500), we aim to isolate the path of compilation
itself, independent of optimization techniques.

This research is intended to contribute to compiler design
and computational performance by analyzing it in several
ways. First, it provides data on the performance differences
between compiled C code and its assembly counterpart in
a controlled environment. Second, it examines how these
differences scale with problem size, revealing an
unexpected trend where the performance gap tends to
widen with greater matrices. Finally, it offers a perspective
into the potential benefits or drawbacks resulting from
bypassing the traditional compilation steps for
computationally heavy tasks.

2. Body of Paper

Methodology

To investigate our hypothesis that traditional compilation
pathways might introduce inefficiencies during the
conversion from a high-level code to assembly, we
intentionally isolated this variable. By comparing the
performance of C code compiled directly to machine code
against the same code first compiled to assembly and then
to machine code-both with zero optimizations-we looked
to accurately measure how the compilation pathway affects
the efficiency of the execution.

Experimental Setup:
All experiments were conducted using the Windows
Subsystem for Linux (WSL) running Ubuntu. Performance
measures were obtained using the GNU profiler (gprof), a

standard tool for analyzing program execution times. For
reliability, each test was performed ten times, with the
results averaged to account for variability.

The test environment consisted of the following:

• Operating System: WSL Ubuntu
• Compiler: GCC (GNU Compiler Collection)
• Profiling Tool: GNU gprof
• Optimization Level: Disabled (-O0)

Implementation Details:

For this study, the matrix multiplication algorithm was the
standard and written in C. To create the assembly version,
the C code was compiled with the -S flag to generate
assembly code. This was then assembled without
modifications to maintain integrity by preventing the
compiler from modifying the code generated from the
initial script. This enabled us to isolate the impact of the
compilation pathway rather than the differences in the
algorithm implementation.

The compiler optimizations were deliberately disabled
using the -O0 flag for both versions to allow focus on the
differences between the compilation pathways rather than
the compilers optimization capabilities.

Testing Procedures:

The procedures consisted of the following steps:

• Compile the C implementation directly to
executable code

• Compile the C implementation to assembly, then
compile the assembly to executable code

• Run each implementation ten times for the
different matrix sizes

• Record execution times using gprof
• Calculate average execution times for each

matrix size
• Compute the percentage difference in

performance

Additionally, using ELF file generation was explored, but
it was found that these implementations were consistently
slower than both the C and assembly version. This suggest
that the standard compilation pathway provided some
benefits.

Results

The performance measures across the different matrix sizes
revealed an interesting pattern regarding the efficiency of
the assembly derived implementation compared to the
direct C implementation.

The performance of the 500×500 matrix is as follows. The
C implementation averaged 0.2358 seconds across ten runs
with minimal variations standard deviation was
approximately 0.003 seconds. The assembly derived
implementation averaged 0.2402 seconds, with a deviation
of approx. 0.0046 seconds, approximately 1.86% slower
than the C version.

As the matrix size increased to 1000×1000, the
performance shifted. The C implementation averaged
2.1278 seconds (Standard Deviation: 0.102 seconds).
Whereas the assembly derived version 2.1238 seconds
(Standard Deviation: 0.063 seconds). This represents a
small improvement of approximately 0.19% for the
assembly version.

With the 1500×1500 matrices, the trend became more
noticeable. The C implementation averaged 10.0321
seconds (Standard Deviation: 0.908 seconds), while the
assembly derived averaged 9.5366 seconds (Standard
Deviation: 0.433 seconds). This shows a 4.94%
improvement in favor of the assembly version.

Analysis

The observed pattern shows several important insights into
the compilation process and its impact on computational
efficiency. For smaller matrices (500×500), the assembly-
derived implementation was marginally slower (1.86%)
and slightly more variable (σ = 0.0046 vs. 0.003 seconds).
However, as matrices grew to 1500×1500, the assembly
version became both faster (4.94% improvement) and more
consistent (σ = 0.433 vs. 0.908 seconds for C). This
suggests that compilation pathways influence not only raw
speed but also execution stability, particularly at scale.

There is a point where the assembly derived version
transitions over from being slower to being faster. The
crossover from c-dominated to assembly-dominated
performance occurs around 1000×1000 matrices, where
assembly begins to outperform C in both speed and
consistency. The reduced variability in assembly
implementations (e.g., σ = 0.063 seconds vs. 0.102 seconds
for C at 1000×1000) aligns with our hypothesis that direct
assembly pathways help to mitigate any inefficiencies in
memory access or instructional scheduling. This trend
strengthens for larger matrices. At 1500×1500, assembly
achieves a 52% reduction in variability (σ = 0.433 vs. 0.908
seconds for c) alongside a 4.94% speed improvement.
These results show that assembly-derived code scales more
gracefully, particularly as memory hierarchy utilization
(L1/L2/L3 caches, main memory) becomes a dominant
factor in performance.

The observed performance patterns align with our
theoretical premise discussed in the introduction. As matrix
sizes increase, the compilation pathway becomes
significant, potentially due to several underlying
mechanisms. The assembly-derived execution may retain

structural characteristics that allow for more efficient
memory access for large data structures. This becomes
noticeable as the matrix size grows and memory hierarchy
usage (L1/L2/L3 caches, main memory) becomes a
dominate factor in performance.

Furthermore, modern CPUs use complex branch prediction
and execution mechanisms that could respond to small
variations in the instruction ordering. The direct c-to-
machine code path and the c-to-assembly-to-machine code
path likely result in slightly differing instruction sequences,
which would explain the diverging performance
characteristics as computational demands increase. These
differences, while negligible for small workloads, could
appear to compound at larger scales.

Several factors could contribute to the observed
performance differences. First, as matrix sizes increase,
memory access patterns play a larger role in performance.
The assembly implementation may maintain more efficient
memory access at larger scales. Another factor could be
explained by the modern CPU. They use complex
predictions that could be better used by the CPU that
reduce pipeline stalls and branch mispredictions.

Caching behaviors also becomes quite critical with large
matrices. Slight discrepancies in instruction scheduling
between two compilation pipelines could result in different
utilization patterns. These would be magnified with larger
matrices.

Using the trends observed, we can estimate that the
performance advantages would continue to increase for
matrix sizes beyond 1500×1500. A rough estimation based
on the previous data points show that for a 2000×2000
matrix, we would see an improvement of 8-10%. For a
matrix that is 3000×3000, we would expect to see and
improvement of 25-20%; assuming it follows the previous
conventions.

These findings have significant implications for compiler
designs and optimization strategies. The performance
advantages observed from assembly derived code for
larger computational tasks show that there may be value in
revisiting traditional compilation pipelines. Future
compiler development may benefit from including a hybrid
approach that uses the advantages of assembly
representation for certain computational patterns while
maintaining the convenience of high-level language
compilation for general purpose code. Additionally, these
results highlight the importance of tailoring compilation to
specific problem domains and scales rather than applying
universal compilation approaches across all computational
contexts.

2.1 Graphs, Tables, and Photographs

This graph compares the performance of regular and
assembly implementations across three matrix sizes. For
small matrices (500×500), the regular implementation
shows a slight advantage. With medium-sized matrices
(1000×1000), both implementations perform nearly
identically. The assembly implementation only shows a
substantial improvement with large matrices (1500×1500),
achieving a 4.94% performance gain.

Matrix
Size

C Time
(s)

Assembly
Time (s)

%
Difference

Variability
σ

500×500 0.2358 0.2402 +1.86 0.003 vs.
0.0046

1000×1000 2.1278 2.1238 -0.19 0.102 vs.
0.063

1500×1500 10.0321 9.5366 -4.94 0.908 vs.
0.433

3. Conclusion

This study investigated the performance of bypassing
traditional compilation steps by comparing unoptimized C
code against its assembly-derived counterpart for matrix
multiplication. The findings reveal that while assembly
implementations initially lag for smaller matrices, they
exhibit significant advantages at scale. For larger matrices,
the assembly version achieved a 4.94% speed improvement
and 52% lower variability (σ = 0.433 vs. 0.908 seconds for
C), demonstrating superior efficiency as memory hierarchy

0

2

4

6

8

10

12

500x500 1000x1000 1500x1500

Matrix Multiplication
Performence Comparison

Regular Implementation (s)

Assembly Implementation (s)

utilization (caches, main memory) dominates performance.
A critical crossover occurs at 1000x1000, where assembly
transitions to outperforming C in both speed and
consistency (σ = 0.063 vs. 0.102 seconds), suggesting that
direct compilation pathways may mitigate inefficiencies in
instruction scheduling or memory access. These results
show how structural characteristics of assembly code, such
as predictable memory patterns and reduced pipeline stalls,
align with modern CPU architectures, compounding
benefits for large-scale computations.

However, the study has limitations. Experiments were
conducted on WSL, potentially introducing overhead
compared to native environments, and relied solely on
GCC with optimizations disabled, limiting real-world
applicability where optimizations are typically used.
Limitations for larger matrices (e.g., 8–10% improvement
at 2000×2000) remain speculative and require empirical
validation.

These findings hold promise for applications demanding
high-performance computing, such as machine learning or
scientific simulations, where assembly-derived code could
enhance both speed and predictability. Real-time systems,
reliant on consistent execution times, may also benefit
from its reduced variability. From a compiler design
perspective, hybrid approaches could selectively delegate
performance-critical routines to assembly-generation
modules, while retaining high-level language convenience
for general-purpose code.

Further work could explore the impact of enabling
compiler optimizations across both pathways, validating
results on native hardware and diverse compilers, and
investigate automated tools for targeted assembly
generation. While traditional compilation pathways remain
practical for most applications, this work highlights the
value of rethinking strategies for large-scale tasks by
tailoring compilation approaches to problem scale and
domain. Future systems could unlock significant gains in
both performance and consistency.

References:

[1] K. Goto and R. A. van de Geijn, Anatomy of high-
performance matrix multiplication, ACM Transactions on
Mathematical Software 34 (2008), 1–25.
Link: https://doi.org/10.1145/1356052.1356053

[2] V. Strassen, Gaussian elimination is not optimal,
Numerische Mathematik 13 (1969), 354–356.
Link: https://doi.org/10.1007/BF02165411

[3] D. Coppersmith and S. Winograd, Matrix
multiplication via arithmetic progressions, Journal of
Symbolic Computation 9 (1990), 251–280.
Link: https://doi.org/10.1016/S0747-7171(08)80013-2

[4] C. Lattner and V. Adve, LLVM: A compilation
framework for lifelong program analysis & transformation,
Proc. International Symposium on Code Generation and
Optimization (CGO), San Jose, CA, 2004, 75–86.
Link: https://llvm.org/pubs/2004-01-30-CGO-LLVM.html

[5] B. Kuzma, I. Korostelev, J. P. L. de Carvalho, J. E.
Moreira, C. Barton, G. Araujo, and J. N. Amaral, Fast
matrix multiplication via compiler-only layered data
reorganization and intrinsic lowering, arXiv:2305.18236
(2023).
Link: https://arxiv.org/abs/2305.18236

LINTUNET: A HYBRID TRANSFORMER-CNN ARCHITECTURE FOR BRAIN TUMOR
SEGMENTATION

Lawrence Menegus, Dongsheng Che
East Stoudsburg University

lmenegus@live.esu.edu, dche@esu.edu

ABSTRACT
Brain tumor segmentation is vital in medical imaging for
accurately identifying tumor regions in MRI scans. While
U-Net and other CNN-based models have been widely
used, they struggle with capturing long-range
dependencies due to their localized receptive fields. To
overcome this, we propose LinTUNet, a Hybrid
Linformer Transformer U-Net, which integrates sparse
self-attention into the U-Net architecture using a Sparse
Linformer for efficient attention computation. By
incorporating Transformer-based attention in the
bottleneck layer, our model enhances feature extraction
while maintaining computational efficiency. Performance
evaluation using key metrics shows that LinTUNet
surpasses U-Net in segmentation accuracy, achieving
higher IoU and F1-scores. This paper presents our
approach to developing a Hybrid Transformer-CNN
model, demonstrating its advantages in medical image
segmentation and deep-learning-driven healthcare
applications.

KEY WORDS

Brain Tumor Segmentation; U-Net; Transformer; Sparse
Linformer; Attention Layer; Convolutional Neural
Network

1. Introduction

Deep learning-based segmentation models have become a
critical component of medical imaging, particularly for
identifying and segmenting brain tumors in MRI scans.
Image segmentation enables precise analysis of specific
structures, which is essential for accurate diagnosis and
treatment planning [1]. Traditional Convolutional Neural
Network (CNN)-based architectures, such as U-Net, have
shown significant success in biomedical image
segmentation [2]. However, CNN-based models face
several challenges that limit their performance in
segmenting complex tumor structures.

One major limitation of CNNs is their restricted receptive
field, which prevents them from capturing long-range
dependencies and global contextual relationships within
medical images [3]. CNNs utilize small convolutional

kernels, making it difficult to segment tumors with
irregular boundaries accurately [4]. As a result,
segmentation errors often occur, particularly when tumor
shapes and sizes vary significantly across patients.
Additionally, CNNs require extensive computational
resources and long training times, making them less
practical for real-time clinical applications [5]. Another
drawback is their poor global awareness, as CNNs operate
on local patches rather than considering the entire image
context, leading to inconsistent boundary predictions [6].
CNN-based models depend on large annotated datasets,
which are costly and time-consuming to obtain in the
medical domain [6]. These challenges highlight the need
for a segmentation model that can efficiently capture
global spatial relationships while maintaining
computational feasibility.

To address these issues and limitations, we propose
LinTUnet, a hybrid Transformer-CNN model that
integrates convolutional layers for local feature extraction
with a Transformer-based Sparse Linformer self-attention
mechanism to capture long-range dependencies. By
combining the strengths of CNNs and Transformers,
LinTUnet enhances segmentation accuracy while
optimizing computational efficiency, making it
particularly suitable for brain tumor segmentation in MRI
scans.

LinTUNet leverages both Linformer and Sparse
Transformer mechanisms to overcome the limitations of
traditional CNN-based segmentation models, particularly
in handling complex tumor structures in MRI scans.
Linformer addresses the inefficiency of standard
Transformers by reducing the quadratic complexity
O (n2) of self-attention to linear complexity O(n) [7].
Instead of computing full self-attention matrices,
Linformer compresses key and value projections into a
lower-dimensional representation, significantly improving
computational efficiency while preserving essential long-
range dependencies. This allows LinTUNet to capture
global spatial relationships without the excessive memory
and processing requirements of full Transformers, making
it feasible for high-resolution medical imaging [7].

Meanwhile, the Sparse Transformer enhances

segmentation accuracy by focusing computational
resources on the most relevant spatial features rather than
processing the entire image uniformly. Unlike traditional
self-attention, which treats all pixels equally, the Sparse
Transformer selectively attends to a subset of tokens,
prioritizing regions with important tumor-related features
[8]. This sparsity reduces redundancy and enhances the
model’s ability to detect tumors with varying shapes and
textures while maintaining computational efficiency.

Together, Linformer and Sparse Transformer complement
each other in LinTUNet. Linformer ensures that the
model can process long-range dependencies efficiently,
while the Sparse Transformer improves segmentation
precision by directing attention to critical areas within the
MRI scan [8]. By integrating both mechanisms,
LinTUNet achieves superior segmentation accuracy while
optimizing computational feasibility, making it a powerful
solution for brain tumor segmentation in medical imaging.

2. Overview of U-Net (CNN) Architecture

U-Net is a convolutional neural network (CNN) designed
for image segmentation, particularly excelling in pixel-
level classification tasks such as tumor identification in
MRI scans. It follows an encoder-decoder structure with
skip connections, allowing it to segment medical images
efficiently while preserving fine-grained spatial details.

The encoder compresses spatial information through
downsampling operations, while the decoder reconstructs
the segmented regions using transposed convolutions and
concatenated feature maps from the encoder. This
architecture effectively retains both low-level and high-
level features, making it ideal for medical imaging tasks
[2].

2.1 Encoder

The encoder consists of multiple downsampling blocks,
each containing:

 Two convolutional layers with ReLU activation

 Batch normalization for stabilizing training

 Max pooling for reducing spatial dimensions

This hierarchical feature extraction process helps the
network learn both fine-grained and abstract features,
which are essential for precise image segmentation[2].

2.2 Bottleneck

The bottleneck layer is positioned between the encoder
and decoder, capturing the most abstract representations

of the input image. It acts as a bridge between feature
extraction and segmentation refinement, ensuring
essential patterns are preserved before reconstruction
begins [4].

2.3 Decoder

The decoder restores the image resolution while
maintaining segmentation accuracy. It achieves this by:

 Upsampling through transposed convolutions

 Concatenating feature maps from the encoder
layers

 Applying double convolutions to refine
segmentation accuracy

This ensures the precise reconstruction of the predicted
mask.

2.4 Skip Connections

Skip connections play a crucial role in U-Net by passing
detailed spatial information from the encoder to the
decoder. This prevents information loss and improves
segmentation precision, particularly for complex
structures like tumors [2].

Figure 1: The U-Net Architecture proposed by Ronneberger et al. In
2015 [2].

3. Proposed Model: LinTUNet

To address the limitations of U-Net and CNN-based
models, we introduce LinTUNet, a hybrid Transformer-
CNN model that enhances segmentation accuracy by
incorporating Transformer-based self-attention into the U-
Net bottleneck.

3.1 Architecture of LinTUNet

LinTUNet builds upon the CNN based U-Net’s encoder-
decoder framework but enhances it with Linformer-based
self-attention at the bottleneck stage to improve feature
representations. Like a traditional Unet CNN this hybrid
consists of a Decoder, Bottleneck or in this case a
linformer attention layer bottleneck and a decoder.

The encoder (downsampling path) and decoder
(upsampling path) are the same as the traditional CNN.
The encoder consists of multiple convolutional layers for
local feature extraction, followed by Batch Normalization,
Dropout, and ReLU activations to improve generalization
and prevent overfitting. These layers progressively reduce
the spatial dimensions while capturing hierarchical
features crucial for accurate segmentation. The decoder
utilizes transposed convolutions to restore spatial
resolution, while skip connections from the encoder
reintegrate fine-grained details lost during downsampling.
Finally, a 1x1 convolution is applied to produce the
segmented tumor mask, ensuring precise localization of
tumor regions.

3.2 Sparse Linformer Attention Layer

At the bottleneck stage, Sparse Linformer transforms the
encoded feature map into a sequence representation to
apply self-attention, effectively capturing long-range
dependencies and improving segmentation consistency.
Figure 2 illustrates an example of our proposed Sparse
Linformer Attention Layer in the LinTUNet bottleneck,
highlighting its role in feature transformation and efficient
attention computation.

A Linformer reduces the computational complexity of the
standard Transformer attention mechanism from O(N²) to
O(N) by projecting the sequence into a lower-dimensional
space [7]. This is achieved using a low-rank
approximation of the attention matrix, making it
computationally efficient for tasks like brain tumor
segmentation.

In standard self-attention, the attention matrix is
computed as:

A=softmax(QK T

√d k
) (1)

where
 Q=XWQ ,K=XW K ,V=XW V (2)

represent the query, key, and value matrices. The
complexity of this computation is O(N²), making it
impractical for large medical images [7].

The Linformer approximates this by introducing low-rank
projections for the key and value matrices:

K '=EK ,V '=FV (3)

where
 E ,F∈ ℝ rxN (4)

are projection matrices that reduce the sequence length
from N to r (r N) [7]. The modified attention≪
computation becomes:

A=softmax(QK T

√d k
) (5)

leading to a output of:
Linformer− Attention (Q,K ,V)=A' V ' (6)

This transformation reduces computational complexity to
O(N) while maintaining segmentation accuracy. For our
proposed Model we used a Sparse Linformer. A sparse
Linformer further optimizes this approach by applying
sparsity constraints on the projection matrices E and F,
ensuring that only a subset of elements contribute to the
computation [8,9]:

 K ’=S (E) K ,V ’=S (F ’)V (7)

where S(E) and S(F) select the most significant rows to
preserve spatial information while reducing memory
usage.

The concept of sparse attention mechanisms was
introduced in the paper "Generating Long Sequences with
Sparse Transformers" by Child et al.[9], which
demonstrated that sparse factorizations of the attention
matrix can reduce computational complexity while
effectively modeling long-range dependencies. LinTUNet
uses this mixture of a Sparse and Linformer attention
layer in a sequence during the bottleneck stage which then
is reshaped back into a 2D feature map before entering the
decoder.

Figure 2. Example of our proposed Sparse Linformer Attention Layer of
the LinTUNet Bottleneck.

The Linformer reduces the size of the attention layer by
compressing pixel-to-pixel interactions and projecting the
information into a lower-dimensional space. It leverages
low-rank approximations, ensuring that only the most
relevant information is retained from the attention
calculations.

The Sparse Linformer further enhances this approach by
selecting only the most important rows from the
compressed data, significantly reducing memory usage
while maintaining the model's ability to capture essential
spatial relationships.

4. Training and Model Evaluation

4.1 Data Collection

The dataset used in this study comprises 2,146 MRI brain
scan images specifically curated to detect brain tumors,
sourced from a Kaggle dataset for semantic segmentation
tasks [10]. To optimize the training process, the dataset
was divided into three subsets: 1,501 images for training,
429 images for validation, and 215 images for testing.
This division ensured the models were trained on a
diverse set of labeled data while being fine-tuned and
evaluated on distinct subsets, thereby enhancing their
ability to generalize to unseen data. Each MRI image is
accompanied by pixel-wise annotations, providing
segmentation masks that delineate the tumor regions.
This segmentation approach is particularly critical for
models like U-Net and LinTUNet, as it enables them to
not only detect the presence of tumors but also accurately
identify tumor boundaries. The dataset includes a variety
of MRI images showcasing tumors with different shapes,
sizes, and locations, allowing the models to learn
comprehensive feature representations across diverse
tumor characteristics.

4.2 Feature Selection and Augmentation

This study utilizes PyTorch for medical image
segmentation, specifically targeting brain MRI scans. A
custom preprocessing pipeline was developed to pair MRI
images with their corresponding segmentation masks,
formatted in COCO-style annotations [11]. The pipeline
incorporates data augmentation techniques such as
resizing, grayscale conversion, tensor conversion, and
normalization to enhance the training process and
improve model generalization. The dataset is structured
into distinct directories for training, validation, and
testing, with mechanisms to ensure accurate pairing of
images and masks. Additionally, a custom dataset class,
built on PyTorch’s Dataset class, facilitates efficient batch

processing and GPU-accelerated transformations via
CUDA, significantly reducing training times [12].

The implementation includes functions for managing
COCO-style annotations and visualizing image samples
overlaid with segmentation masks, enabling quality
assurance. Error handling mechanisms were integrated to
address mismatches between images and masks, ensuring
only valid pairs are used during training. These features
combined with the robust data pipeline, contribute to the
model’s accuracy, efficiency, and scalability in the
medical imaging domain.

4.3 Mask Generation and Dataset Preparation

In this study, segmentation masks for the MRI brain scans
were generated using the COCO annotation format, which
provides pixel-level annotations of tumor regions. The
dataset’s annotation file, stored in JSON format, was
processed to extract segmentation data for each MRI
image. A custom create_mask function was developed to
iterate through the segmentation points specified in the
annotations. These points, stored as a list of coordinates
outlining the tumor boundary, were converted into
polygonal shapes using the skimage.draw.polygon
function. This method filled the tumor regions with white
pixels (255), effectively creating binary masks that
highlighted the tumor areas. The generated masks were
saved as TIFF files, with each mask corresponding to a
specific MRI image. Figure 3 illustrates a Brain Scan
MRI image with the COCO-Style Annotation,
demonstrating the pixel-level segmentation used in this
study.

The images and their corresponding segmentation masks
were organized into separate directories for training,
validation, and testing. A mask_folders_if_not_exist
function was using dynamic programming implemented
to ensure that masks were only generated if the output
directories did not already exist, thus avoiding
redundancy. To maintain data integrity, a compare_folders
function was developed to identify and remove
mismatched images and masks. Finally, a train_test_split
function was employed to partition the data into training,
validation, and test sets, ensuring consistency across the
models. This structured approach ensured that the data
was well-prepared for model training and evaluation,
enabling robust performance for both U-Net and
LinTUNet.

Figure 3. Brain Scan MRI image with the COCO-Style Annotation

4.4 Training Strategy

The LinTUNet model is trained using Binary Cross-
Entropy with Logits Loss (BCEWithLogitsLoss), a widely
used loss function for binary segmentation tasks like
tumor detection in brain MRI scans. This loss function
combines the sigmoid activation function with binary
cross-entropy loss, ensuring stable numerical computation
and penalizing incorrect predictions. The BCE loss is
calculated as:

 L=−
1
N

∑i=1
N [yi log (σ (xi))+(1− yi) log (1−σ (xi))] (8)

where
 yi is the ground truth label, xi is the predicted value
(logits), and

 σ (xi)=
1

(1+e− xi) (9)

is the sigmoid activation function. This loss function is
particularly effective in handling imbalanced datasets,
which is crucial for medical imaging applications [13].

For optimization, the Adam optimizer [14] is chosen due
to its adaptive moment estimation, which dynamically
adjusts learning rates based on past gradient updates.
Adam’s parameter updates follow:

mt=B1mt −1+(1−B1) gt (10)

vt=β 2vt −1+(1−β2)gt
2 (11)

 mt=mt

mt

1−β 1
t
, vt=

v t

1−βt
t (12)

θ t=θ t−1−α
mt

√vt+ϵ
 (13)

where mt , v tare the first and second moment estimates of
the gradient, β1 , β2 control the decay rates, and is the𝛼
learning rate.

To further stabilize training for the models, a StepLR
learning rate scheduler is applied, which reduces the
learning rate at predefined intervals:

 α t=α0 γ
[t / step] (14)

 where α0 is the initial learning rate, is the decay𝛾
factor, and is the current epoch number. This ensures𝑡
that the learning rate is high during initial epochs for rapid
learning but decays over time for fine-tuning.

To accelerate training and reduce memory consumption,
Automatic Mixed Precision (AMP) is employed. AMP
dynamically switches between single-precision (FP32)
and half-precision (FP16) computations, allowing for
larger batch sizes and faster training while maintaining
numerical stability [15]. A critical component of AMP is
gradient scaling, which prevents underflow issues in FP16
computations by scaling the gradients before
backpropagation:

 g=S g (15)

where is a scaling factor applied to the gradients ,𝑆 𝑔
ensuring that small values do not get truncated to zero.
This approach significantly speeds up deep learning
models trained on large medical datasets without affecting
accuracy [15].

The model training process follows a structured pipeline
that includes data augmentation, GPU acceleration, and
progressive learning rate adjustments. Each epoch begins
with a forward pass, where in put MRI images are
processed through the encoder, Sparse Linformer
attention layer, and decoder. The model’s output is
compared against ground truth segmentation masks using
BCEWithLogitsLoss, and gradients are computed for
backpropagation. To prevent vanishing or exploding
gradients, gradient clipping is applied by restricting the
norm of the gradients:

g= g

max(1 , ∥ g∥
c) (16)

where g is the gradient vector and c is the clipping
threshold. The validation phase follows each training
epoch, assessing model performance on unseen data. The
learning rate scheduler is updated at predefined intervals
to stabilize training and enhance generalization[14].

To calculate the overall accuracy we used the pixel-wise
accuracy calculation for model training and evaluation.

Which used the raw predictions from the model (logits)
are passed through a sigmoid function to convert them
into binary values (0 or 1). The same process is applied to
the ground truth masks to ensure consistency. The
predicted and actual masks are then compared element-
wise, and the number of correctly classified pixels is
summed. Finally, this sum is divided by the total number
of pixels in the mask to obtain the accuracy.

 Accuracy=
(∑i

n1 (y(predi)= y(truei)))
N

 (17)

In pixel-wise accuracy calculation y(predi), represents the

predicted binary mask, while y(truei) is the actual ground
truth mask. The total number of pixels in the mask is
denoted by . Accuracy is computed as the ratio of𝑁
correctly classified pixels to the total pixels, using the
indicator function 1(), which returns 1 if the prediction⋅
matches the ground truth and 0 otherwise. This ensures an
accurate measure of segmentation performance across the
dataset [17].

4.5 Segmentation Performance Metrics

To evaluate segmentation performance, Intersection over
Union (IoU), Dice Score (F1 Score), Precision, and Recall
are computed. IoU, also known as the Jaccard Index,
measures the degree of overlap between predicted and
ground truth segmentation masks and is defined as:

 IoU= A∪ B
A∩B

(18)

Higher IoU values indicate better segmentation
performance [18]. Similarly, the Dice Score (F1 Score)
quantifies segmentation accuracy by measuring the
harmonic mean of precision and recall:

 Dice=2 A∩B
A+B

(19)

This metric is particularly useful in medical imaging, as it
balances false positives and false negatives.

Precision and recall further assess the model’s reliability.
Precision evaluates the proportion of correctly predicted
tumor pixels relative to all predicted tumor pixels:

Precision= TP
TP+FP

 (20)

where Tp = True Postitives, FP = False Positives, FN =
False Negatives. These metrics ensure that the model does
not produce excessive false positives or false negatives
[19].

Throughout training, key performance indicators such as

training and validation loss, accuracy, IoU, precision, and
F1-score are recorded per epoch to monitor the model’s
learning progress. This ensures early detection of
overfitting or underperformance, allowing necessary
adjustments to be made. Once trained, the final model is
evaluated on an independent test set to validate its
generalization ability on unseen MRI scans. By
integrating Sparse Linformer self-attention in the
bottleneck stage, BCEWithLogitsLoss, Adam
optimization with learning rate scheduling, and mixed
precision training, LinTUNet achieves an efficient and
accurate segmentation while maintaining computational
efficiency. This combination of Transformer-based self-
attention and convolutional feature extraction enables the
model to effectively capture both local and global
contextual information, making it highly suitable for
image segmentation tasks.

5. Results and Discussion

5.1 Training and Validation Loss and Accuracy

This project was conducted on Google Colab, utilizing
Google Cloud's computational resources. The results
presented below are based on one of several trial runs of
the Jupyter notebook. Due to variability in cloud resource
allocation, minor differences may occur between runs.
However, LinTUNet consistently outperformed U-Net
across all trials, with the extent of improvement varying.
Despite these minor fluctuations, the overall trends and
conclusions remain impressive and robust. The following
graphs and visuals represent one such trial, providing a
detailed analysis of U-Net (CNN) and LinTUNet
(Transformer-CNN), highlighting their respective loss
functions, accuracy trends, and segmentation
performance.

Demonstrated in Figure 4, LinTUNet slightly outperforms
U-Net in both accuracy and loss reduction during the
entirety of both model’s training and evaluation. In
visuals (a) and (b), the loss curves of U-Net and
LinTUNet, respectively, indicate that LinTUNet achieves
a slightly lower loss. Moreover, LinTUNet attains an
impressive 98.95% accuracy, slightly surpassing U-Net’s
97.57%, as illustrated in visuals (c) and (d). This suggests
that LinTUNet not only enhances pixel-wise classification
accuracy but also ensures more consistent and precise
segmentation across the dataset. The combination of
lower loss and higher accuracy reinforces LinTUNet’s
ability to effectively capture long-range dependencies and
spatial relationships, leading to superior segmentation
performance compared to traditional CNN-based
architectures.

(a) U-Net Loss (b) LinTUNet Loss (c) U-Net Accuracy (d) LinTUnet Accuracy

Figure 4. U-Net and LinTUNet loss and accuracy curves, illustrating model performance. (a) U-Net’s loss
curve. (b) LinTUNet’s loss curve. (c) U-Net’s accuracy curve. (d) LinTUNet’s accuracy curve.

 (a) Input Image (b) U-Net’s Prediction (c) LinTUnet Prediction

Figure 5. Model predictions for the Image Segmenation. (a) The input image used for both U-Net and
LinTUNet models. (b) U-Net’s predicted segmentation mask (c) LinTUNet’s predicted segmentation
mask.

5.2 Segmentation Performance

Table 1 presents a comprehensive comparison of UNet
(CNN) and LinTUNet across key segmentation
performance metrics this includes F1 Score, Intersection
of Union and overall precision.

Table 1. Results of the all metrics of U-Net and LinTUNet

Metric U-Net (CNN) LinTUNet (ours)
F1 Score 0.6013 0.8675
IoU 0.4321 0.7668
Precision 0.7871 0.7871

As shown in Table 1, LinTUNet significantly outperforms
U-Net in image segmentation across multiple key metrics.
It achieves an impressive F1 Score of 0.8675, compared
to U-Net’s 0.6013, demonstrating a much better balance
between precision and recall. This indicates that
LinTUNet generates fewer false positives and false
negatives, resulting in more accurate and reliable
segmentation

Another crucial metric, Intersection over Union (IoU),
further highlights LinTUNet’s superiority in spatial
localization. With an IoU of 0.7668—considerably higher
than U-Net’s 0.4321—LinTUNet more accurately aligns
predicted tumor regions with the input images. This
improvement is visually evident in Figure 5, where
LinTUNet’s segmentation (c) closely matches the input
image of the tumor related area (a), whereas U-Net’s
prediction (b) deviates significantly, with the segmented
tumor area appearing overly broad and imprecise.

Interestingly, both models achieve an identical precision
of 0.7871, indicating that they identify tumor pixels with
similar correctness. However, LinTUNet’s higher F1
Score and IoU suggest superior overall segmentation by
reducing false negatives, making it more effective at
detecting the tumor regions.

This analysis covers the entire prediction performance of
both models, confirms that LinTUNet consistently
delivers more precise and accurate tumor segmentation

than U-Net, making it a more reliable approach for
medical image analysis.

5.3 Execution Time

Beyond accuracy and other performance metrics,
LinTUNet offers a significant advantage in inference
speed, making it much more efficient for real-time
applications. It processes an image in just 0.0002 seconds
(0.2 milliseconds), whereas U-Net takes 0.0014 seconds
(1.4 milliseconds). This means LinTUNet generates
predictions 7 times faster than U-Net, a crucial
improvement for high-throughput medical imaging and
real-time diagnostic applications. A key contributor to this
efficiency could be from the automatic mixed precision
(AMP) autocasting, which optimizes computations by
dynamically switching between single-precision (FP32)
and half-precision (FP16) during training, helping to
increase processing power and computational efficiency.

6. Conclusion

Our proposed hybrid Transformer-CNN model,
LinTUNet, consistently outperforms traditional CNN-
based methods like U-Net in image segmentation. By
integrating Sparse Linformer self-attention into the U-Net
architecture, LinTUNet captures long-range dependencies
while maintaining computational efficiency. Its ability to
deliver more accurate image segmentations while
significantly reducing processing time makes it highly
suitable for real-time medical applications. Having
demonstrated the advantages of this approach, we
anticipate future studies applying LinTUNet to larger and
more diverse medical imaging datasets, including multi-
modal MRI scans segmentation tasks, to further validate
its effectiveness. By harnessing the power of
Transformers for medical imaging, LinTUNet has the
potential to improve diagnostic accuracy, enhance early
detection, and ultimately contribute to better patient
outcomes, potentially saving lives.

References:

[1] G. Litjens et al., "A survey on deep learning in
medical image analysis," Medical Image Analysis, vol.
42, pp. 60-88, 2017. [Online]. Available:
https://doi.org/10.1016/j.media.2017.07.005

[2] O. Ronneberger, P. Fischer, and T. Brox, "U-Net:
Convolutional networks for biomedical image
segmentation," arXiv preprint, arXiv:1505.04597, 2015.
[Online]. Available: https://arxiv.org/abs/1505.04597

[3] K. Simonyan and A. Zisserman, "Very deep

convolutional networks for large-scale image
recognition," arXiv preprint, arXiv:1409.1556, 2014.
[Online]. Available: https://arxiv.org/abs/1409.1556

[4] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and
O. Ronneberger, "3D U-Net: Learning dense volumetric
segmentation from sparse annotation," Proceedings of the
International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), 2016, pp.
424-432. [Online]. Available: https://doi.org/10.1007/978-
3-319-46723-8_49

[5] F. Isensee et al., "nnU-Net: A self-adapting framework
for U-Net-based medical image segmentation," Nature
Methods, vol. 18, pp. 203-211, 2021. [Online]. Available:
https://doi.org/10.1038/s41592-020-01008-z

[6] B. H. Menze et al., "The multimodal brain tumor
image segmentation benchmark (BraTS)," IEEE
Transactions on Medical Imaging, vol. 34, pp. 1993-2024,
2015. [Online]. Available:
https://doi.org/10.1109/TMI.2014.2377694

[7] A. Dosovitskiy et al., "An image is worth 16x16
words: Transformers for image recognition at scale,"
arXiv preprint, arXiv:2010.11929, 2020. [Online].
Available: https://arxiv.org/abs/2010.11929

[8] A. Wang et al., "Linformer: Self-attention with linear
complexity," arXiv preprint, arXiv:2006.04768, 2020.
[Online]. Available: https://arxiv.org/abs/2006.04768

[9] R. Child, S. Gray, A. Radford, and I. Sutskever,
"Generating long sequences with sparse transformers,"
arXiv preprint, arXiv:1904.10509, 2019. [Online].
Available: https://arxiv.org/abs/1904.10509

[10] P. Darabi, "Brain tumor image dataset (semantic
segmentation)," Kaggle, 2021. [Online]. Available:
https://www.kaggle.com/datasets/pkdarabi/brain-tumor-
image-segmentation

[11] M. Deng, K. He, and R. Girshick, "COCONut:
Modernizing COCO segmentation," Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024. [Online]. Available:
https://openaccess.thecvf.com/content/CVPR2024/papers/
Deng_COCONut_Modernizing_COCO_Segmentation_C
VPR_2024_paper.pdf

[12]Deep learning software, NVIDIA Developer, 2023.
[Online]. Available: https://developer.nvidia.com/deep-
learning-software

https://arxiv.org/abs/1409.1556
https://doi.org/10.1016/j.media.2017.07.005
https://developer.nvidia.com/deep-learning-software
https://developer.nvidia.com/deep-learning-software
https://openaccess.thecvf.com/content/CVPR2024/papers/Deng_COCONut_Modernizing_COCO_Segmentation_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Deng_COCONut_Modernizing_COCO_Segmentation_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Deng_COCONut_Modernizing_COCO_Segmentation_CVPR_2024_paper.pdf
https://www.kaggle.com/datasets/pkdarabi/brain-tumor-image-segmentation
https://www.kaggle.com/datasets/pkdarabi/brain-tumor-image-segmentation
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2010.11929
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
https://arxiv.org/abs/1505.04597

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning, Cambridge, MA: MIT Press, 2016. [Online].
Available: https://www.deeplearningbook.org/

[14] D. P. Kingma and J. Ba, "Adam: A method for
stochastic optimization," arXiv preprint,
arXiv:1412.6980, 2014. [Online]. Available:
https://arxiv.org/abs/1412.6980

[15] P. Micikevicius et al., "Mixed precision training,"
International Conference on Learning Representations
(ICLR), 2018. [Online]. Available:
https://openreview.net/forum?id=r1gs9JgRZ

[16] J. Long, E. Shelhamer, and T. Darrell,
"Fully convolutional networks for semantic
segmentation," Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
2015, pp. 3431-3440. [Online]. Available:
https://doi.org/10.1109/CVPR.2015.7298965

[17] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and
M. Jorge Cardoso, "Generalised dice overlap as a deep
learning loss function for highly unbalanced
segmentations," Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision
Support, 2017, pp. 240-248. [Online]. Available:
https://doi.org/10.1007/978-3-319-67558-9_28

[18] J. P. Cohen, G. Bertin, and H. Frappier, “Mitigating
Bias in Radiology Machine Learning: 3. Performance
Metrics,” Journal of Medical Imaging, vol. 9, no. 4, 2022.
[Online].Available:https://pmc.ncbi.nlm.nih.gov/articles/P
MC9530766

[19] A. J. Carrillo-Perez, P. Jimenez-Carretero, and R.
Gonzalez-Diaz, “Towards a guideline for evaluation
metrics in medical image segmentation,” BMC Research
Notes, vol. 15, no. 1, pp. 1–10, 2022. [Online]. Available:
https://bmcresnotes.biomedcentral.com/articles/10.1186/s
13104-022-06096-y

https://pmc.ncbi.nlm.nih.gov/articles/PMC9530766
https://pmc.ncbi.nlm.nih.gov/articles/PMC9530766
https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-022-06096-y
https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-022-06096-y
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-67558-9_28
https://doi.org/10.1109/CVPR.2015.7298965
https://openreview.net/forum?id=r1gs9JgRZ
https://www.deeplearningbook.org/

Birds of a Feather

Shared Course Planning in PASSHE
Hosted by:

Charles Girard Shippensburgh University
cdgira@ship.edu

PASSHE has started a push for course sharing across the state system. Their new share portal,
Academic Sharing | PA State System of Higher Education, is set up to help students find courses
they can take at other institutions more easily. Rather than just choosing courses at random and
offering them, I am hoping to discuss how the various computer science programs across the
PASSHE system might coordinate to use this resource to strengthen our programs. For example,
knowing that one school will have a C programming course offered in the fall so that we can
dedicate resources to running an elective or an additional general education course. The first
would just be identifying common courses and then how we could balance them so enrollments
stay strong while hopefully giving students more flexibility.

Mobile App Development: Teaching Strategies, Experiences, and Best Practices
Hosted By

Dave Tucker,
Alawya Alawami

Pennsylvania Western University (Edinboro),
Pennsylvania Western University (Clarion)

dtucker@pennwest.edu,
aalawami@pennwest.edu

Mobile application development has become an integral part of computer science and information
systems curricula, yet instructors face numerous challenges in teaching this subject. These
challenges include selecting appropriate development environments, choosing programming
languages, and deciding which mobile operating system to target. Additionally, designing
assignments that balance complexity with practical integration on actual devices can be difficult.
Additional discussion will center around how to accommodate students who do not have access to
Android devices, given iOS is difficult to deploy on.

This Birds of a Feather (BoF) session aims to foster a PASSHE community of mobile app instructors,
facilitating the exchange of teaching strategies, experiences, and best practices. We will explore
various development environments, including Android-only, iOS-only, and cross-platform
solutions, as well as discuss methods for deploying applications on iPhones. Furthermore, this
session will serve as a platform to share both successful and challenging experiences, with the goal
of creating a repository of student project ideas.

Abstracts

2025: PACISE

Title: Design and development of 3D UI layout for virtual and augmented

reality using a model-based design tool

Abstract:

Virtual and augmented reality (VR, AR) has an increasing impact on the market in many fields,

from education and medicine to engineering. The design of inclusive and immersive user interfaces

for virtual and augmented reality systems remains challenging for the human-computer interaction

(HCI) community. However, building an optimal 3D user interface (UI) design is not an easy

process due to the noisiness of user behavior and the variability of user preferences. Additionally,

designing 3D user interfaces (UIs) with limited research to understand the usability of VR/AR

systems is detrimental to the goal of providing rich, inclusive experiences for all users.

In this paper, we first explore the foundations of ability-based design and design engineering used

in engineering to design products and systems. Thus, by using techniques from design engineering,

we systematically investigate the design parameters that dominate user performance and comfort

when interacting with UI layouts. So, this research aims to explore the effects of physical

ergonomics, cognition, and visual perception on the usability of VR and AR systems. Then, we

categorize the identified parameters into the relevant controllable and uncontrollable parameters

that dominate user performance and comfort when interacting with 3D user interfaces. Due to the

difficulty in extracting data in the field from actual users or generating realistic data from proxy

users, we use a model-based approach that involves two steps: (1) identification and examination

of pertinent models of human performance and (2) determination of the optimal settings of

controllable parameters using these models. A model-based approach offers the potential for cost

and time-effective evaluation of user performance without the need for intrusive measures.

Second, we create a novel model-based design toolkit that facilitates the design, creation, and

exploration of inclusively immersive 3D UI layouts. After the identification of optimal parameter

settings, we will integrate these settings into our UI design toolkit and enable the toolkit to generate

the most optimal UI given specifications set by the designer. This toolkit can be used to construct

UI layouts that accommodate the user's unique perceptual, cognitive, and physical capabilities.

Additionally, we use the design parameter analyses to convert the parameters into predictive

models, which are then used to construct a single objective function to optimize. Additionally, we

apply a user-involved approach to the toolkit through preference learning to integrate the

designer’s feedback into the optimization process and suggest alternative configurations pertaining

to user capability at design time.

Finally, we design our UI design toolkit for the Hololens 2, an optical see-through HMD device.

The Hololens 2 provides an AR experience by projecting holograms onto the user’s real-world

environment. The Hololens 2 also utilizes spatial mapping, which provides a detailed

representation of real-world surfaces around the device's environment. Using Hololens 2, we

define the interaction space of this AR system as a 3D Cartesian grid consisting of locations where

a person can reach and manipulate objects with a fixed torso position. The interaction space is

divided into elements called voxels, which are used to determine the optimal placement of UI

elements in terms of physical ergonomics, text readability, and color harmony, as described in the

following subsections. We also show how to generate an optimized UI layout using preference

learning. Our research has shown that utilizing a competency-based design perspective can be

beneficial in focusing on competencies throughout the design process, resulting in systems that

maximize human potential. We expect that the identification of critical design parameters and the

preliminary framework provided by the design toolkit can provide a foundation for further work

to improve the quality of immersive experiences provided to users of various abilities.

References:

1. M. Bachynskyi, G. Palmas, A. Oulasvirta, and T. Weinkauf. Informing the design of novel input

methods with muscle coactivation clustering. ACM Trans. Comput.-Hum. Interact., 21(6), Jan.

2015. doi: 10.1145/ 2687921

2. A. Blandford. Semi-structured qualitative studies. 01 2013.

3. D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y.-Q. Xu. Color harmonization. ACM Trans.

Graph., 25(3):624–630, July 2006. doi: 10.1145/1141911.1141933

4. S. Dias, J. Diniz, E. Konstantinidis, T. Savvidis, V. Zilidou, P. Bamidis, A. Grammatikopoulou,

K. Dimitropoulos, N. Grammalidis, H. Jaeger, M. Stadtschnitzer, H. Silva, G. Telo, I.

Ioakeimidis, G. Ntakakis, F. Karayiannis, E. Huchet, V. Hoermann, K. Filis, E. Theodor-

opoulou, G. Lyberopoulos, K. Kyritsis, A. Papadopoulos, A. Depoulos, D. Trivedi, R.

Chaudhuri, L. Klingelhoefer, H. Reichmann, S. Bostantzopoulou, Z. Katsarou, D. Iakovakis,

S. Hadjidimitriou, V. Charisis, G. Apostolidis, and L. Hadjileontiadis. Assistive hci-serious

games co-design insights: The case study of i-prognosis personalized game suite for

parkinson’s disease. Frontiers in Psychology, 11, 2020.

5. J. J. Dudley, J. T. Jacques, and P. O. Kristensson. Crowdsourcing Design Guidance for

Contextual Adaptation of Text Content in Augmented Reality. Association for Computing

Machinery, New York, NY, USA, 2021.

6. J. a. M. Evangelista Belo, A. M. Feit, T. Feuchtner, and K. Grønbæ k. XRgonomics: Facilitating

the Creation of Ergonomic 3D Interfaces. Association for Computing Machinery, New York,

NY, USA, 2021.

7. K. Z. Gajos, D. S. Weld, and J. O. Wobbrock. Automatically generating personalized user

interfaces with supple. Artificial Intelligence, 174(12):910–950, 2010. doi:

10.1016/j.artint.2010.05.005

8. A. Goicoechea, D. Hansen, and L. Duckstein. Multiobjective decision analysis with

engineering and business application. John Wiley and Sons Inc., New York, NY, USA, 1982.

9. D. Hasler and S. Suesstrunk. Measuring colourfulness in natural images. Proceedings of SPIE

- The International Society for Optical Engineering, 5007:87–95, 06 2003. doi:

10.1117/12.477378

10. J. D. Hincapié -Ramos, X. Guo, P. Moghadasian, and P. Irani. Consumed endurance: A metric

to quantify arm fatigue of mid-air interactions. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’14, p. 1063–1072. Association for Computing

Machinery, New York, NY, USA, 2014. doi: 10.1145/2556288. 2557130

11. R. Marler and J. Arora. The weighted sum method for multi-objective optimization: new

insights. Structural and Multidisciplinary Optimization, 41:853–862, 2010.

12. Y. Matsuda. Color design. Asakura Shoten, 1995.

13. L. McAtamney and E. Nigel Corlett. Rula: a survey method for the investigation of work-related

upper limb disorders. Applied Ergonomics, 24(2):91–99, 1993. doi: 10.1016/0003-

6870(93)90080-S

14. M. Mott, J. Tang, S. Kane, E. Cutrell, and M. R. Morris. “I just went into it assuming that I

wouldn’t be able to have the full experience”: Understanding the accessibility of virtual reality

for people with limited mobility. In ASSETS 2020. ACM, October 2020.

15. G. Stockman and L. G. Shapiro. Computer Vision. Prentice Hall PTR, USA, 1st ed., 2001.

16. K. Todi, D. Weir, and A. Oulasvirta. Sketchplore: Sketch and explore with a layout optimiser.

pp. 543–555, 06 2016. doi: 10.1145/2901790. 2901817

17. D. Tolani and N. Badler. Real-time inverse kinematics of the human arm. Presence

(Cambridge, Mass.), 5:393–401, 02 1996. doi: 10. 1162/pres.1996.5.4.393

18. E. Triantafyllidis and Z. Li. The challenges in modeling human performance in 3d space with

fitts’ law. CoRR, abs/2101.00260, 2021.

19. J. O. Wobbrock, S. K. Kane, K. Z. Gajos, S. Harada, and J. Froehlich. Ability-based design:

Concept, principles and examples. ACM Trans. Access. Comput., 3(3), Apr. 2011. doi:

10.1145/1952383.1952384

20. L. Zadeh. Optimality and non-scalar-valued performance criteria. IEEE Transactions on

Automatic Control, 8:59–60, 1963.

Automating Faculty Services in Universities for Enhanced Efficiency
Naresh Adhikari

Department of Computing and Security, Slippery Rock University
naresh.adhikari@sru.edu

Abstract:

Faculty members in universities undertake a diverse range of responsibilities beyond teaching and
research, including faculty recruitment, club advising, peer observation, peer evaluation for tenure,
promotion, sabbatical, conference organization, and professional development workshops, among other
tasks. These tasks often require significant administrative effort, leading to inefficiencies and workload
imbalances. Automation presents a viable solution to streamline these services, reducing faculty
burnout and enhancing institutional effectiveness.

	Title Page
	Faculty Articles
	An Audiovisual Demo Platform as an Interactive Kiosk for
	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Step 1: Using the demo software as-is
	5 Step 2: Making the demo software more robust
	6 Step 3: Adding more engaging features
	7 Future Scope: Making a Kiosk Mode
	8 Conclusion
	9 Acknowledgements
	References

	making quantum computing accessible a path for cs
	Introduction
	Related Work
	Pedagogical Approach and Essential Concepts
	Linear Algebra
	Quantum Mechanics
	Postulate 1: Individual Quantum Systems
	Postulate 2: Quantum Operations
	Postulate 3: Composite Quantum Systems
	Postulate 4: Measurement

	Challenges and Solutions
	Terminologies, Notations, and Meanings
	Circuit Diagrams
	Algebraic Rules

	Evaluation and Conclusion

	Effective Approaches for Teaching Introductory Programming Without Coding Assignments
	Introduction
	Background
	Grading Criteria
	Course Structure and Resources
	Printed Textbook
	Exercise Problems in the Textbook
	In-class Programming Quizzes
	Unofficial Programming Assignments

	Challenges and Adjustments
	Low Pass Rate
	Manual Grading and Verbal Feedback

	Discussion
	Related Work
	Conclusion

	INTEGRATING AI INTO CSIS EDUCATION PRACTICAL APPLICATIONS AND ABET
	INTEGRATING AI INTO CS/IS EDUCATION: PRACTICAL APPLICATIONS AND ABET COMPLIANCE
	ABSTRACT
	KEY WORDS

	RLBot_NN_Girard_PACISE_AuthorInfo
	2.4 Representing Location
	6 Conclusion

	From_Knutt_s_Axioms_to_the_Art_Gallery_Problem
	Introduction
	Problem Statement
	VC-Dimension
	Order Claim
	Knutt's Axioms

	Structural Lemmas
	Procedure
	Removal of Redundancy
	Algorithms

	Conclusion

	Graduate Articles
	SURVEY OF THE HISTORY OF COMPUTER MALWARE
	KEY WORDS
	Computer viruses, computer worms, computer malware, malware evolution, malware detection, cybersecurity threats

	INTERGENERATIONAL CLASSIFICATION OF REDDIT COMMENTS BASED ON SLANG
	ABSTRACT
	KEY WORDS
	1. Introduction
	2. Background
	References:

	Undergraduate Articles
	THE FUTURE OF TEACHING AI ASSISTED LEARNING PLATFORM
	ABSTRACT
	KEY WORDS
	1. Introduction
	2. AI Assisted Learning Environment Users
	3. System Architecture
	4. Prototype
	4.1 Services Provided in the Platform
	4.2 Generate Learning Content
	5. Knowledge Tracing
	5.1 Related Work in Knowledge Tracing
	5.2 Implementing Dynamic Key-Value Memory Networks for Knowledge Tracing
	This implementation0F provides a practical approach to knowledge tracing using neural networks inspired by DKVMN. The code creates a system that can predict whether a student will answer a question correctly based on their history of interactions wit...
	In the following sections, we will introduce the knowledge tracing algorithm implemented in this paper, data processing, neural network architecture, results, and customization. Section 6.1 will discuss how to modify this implementation to the assessm...
	5.3 Knowledge Tracing Algorithm
	The model starts from (1) determine students’ learning ability. There are two steps to determine students’ learning ability. First, the correct rate and error rate of questions answered is calculated. Second, a K-means Clustering algorithm is used to ...
	5.3.1 Data Processing
	The implementation works with synthetic datasets from the DeepKnowledgeTracing repository, which represent student-skill interactions in a matrix format:
	1. Data Extraction: The data loader downloads the repository and extracts the synthetic datasets, where each row represents a student, and each column represents a skill/question.
	2. Data Transformation: The implementation converts this matrix format into a sequence format where each row represents a single interaction (user_id, skill_id, correct), which is the standard format for knowledge tracing.
	3. Sequence Creation: For each student, we create sliding windows of interactions to capture the sequential nature of learning. Each window consists of previous skill interactions and correctness values, with the next interaction serving as the predic...
	5.3.2 Model Architecture
	5.3.3 Training and Evaluation
	5.4 Results
	The result we got is the same as the authors shown in the paper [13], which verify the correctness of implementation. The algorithm will be customized to the input we have for the computer science related questions.
	5.5 Customization
	6. Knowledge Tracing in Computer Science Education
	There are two types of assessments in Computer Science education, open-ended questions such as short answers and programming and binary-valued questions where the answers are evaluated as right or wrong. The knowledge tracing that we implemented could...
	6.1 Binary-Valued Questions
	In order to quickly push students from their current learning levels (low, medium, or high) to higher level while give them enough exercises. Here is the design of assessment input data that needed for binary-valued questions. In the next stage of the...
	Majority of the knowledge tracing model use ASSISTmentData as the training dataset. While the public dataset helps researchers compare different knowledge tracing algorithms, it does not tailor to Computer Science problems. Here are the inputs needed ...
	• user_id: the ID of the student doing the problem
	• prior_problem_count_topic_diff: total number of problems tried by this students in topic m and difficult level n
	• priori_correct_topic_diff: the number of problems the student had answered correctly in topic m and difficult level n
	• problem_id: the ID of the problem
	• problem_id_tried: total number of attempts for problem_id n
	• problem_id_correct: total number of correct attempts for problem id n
	• problem_tag: topic of the problem
	• correct:
	o 1 = Correct
	o 0 = Incorrect
	• first_action: whether the student requested help during the first exercise
	• difficulty_id: high, medium, low
	The design logic is that in addition to difficult level of different topics, for example, define variable is easier than loop and decision structure. Each topic also contains questions with different difficult levels. Students’ learning capabilities w...
	6.2 Open-Ended Questions
	The only paper we found on open-ended questions is Open-ended knowledge tracing for computer science education [14]. The difficult part for open-ended questions is that the knowledge tracing model need to predict students’ precise open-ended responses...
	7. Evaluation of the AI Assisted Learning Platform
	The effectiveness and educational impact of the AI assisted and adaptive learning environment will be evaluated through a blend of objective and subjective meausres.
	Objective Measures:
	• Performance Improvement: Statistical comparison of test/quiz grades on Galaxymentor system and completion rates pre- and post-implementation using paired t-tests to evaluate significant differences.
	• Engagement Analysis: Evaluation of interaction logs of Galaxymentor system through descriptive statistics to quantify system usage patterns and time on task.
	• Learning Gains: Measurement of concept mastery via pre- and post-tests, analyzed using Analysis of variance (ANOVA) to discern learning advancements attributable to the system.
	Subjective Measures:
	• User Satisfaction: Survey data analyzed using a Likert scale to determine user satisfaction levels and perceived ease of use.
	• Qualitative Feedback: Thematic analysis of open-ended survey responses and focus group discussions to extract prevailing opinions and suggestions for system improvement.
	This integrated approach will provide a thorough assessment of the system, ensuring that it meets both technical standards and educational needs.
	8. Conclusion
	References

	ON PRODUCTIVENESS AND COMPLEXITY IN REAL FUNCTION
	Introduction
	Definitions and Preliminaries
	Equivalence to Identically 0 Function Problem
	Differentiation and Continuity Problem
	Other Real Function Problems
	Conclusion

	CONSOLIDATING LECTURE NOTES AND COMPUTING ENVIRONMENT THROUGH
	Introduction
	Literature Survey
	Development
	Building Images
	Deploying Platform

	Discussion
	Cross-Platform Compatibility
	Deployment Best Practices
	Performance Evaluation

	Conclusion

	efficiency transition in matrix multiplication hybrid compilation paths outperform
	ABSTRACT
	KEY WORDS
	1. Introduction
	2. Body of Paper
	2.1 Graphs, Tables, and Photographs

	3. Conclusion
	References:

	LINTUNET A HYBRID TRANSFORMER-CNN ARCHITECTURE FOR BRAIN TUMOR
	Birds of a Feather
	shared course planning in passhe
	Mobile App Dev
	Abstracts
	design and development of 3d ui layout for virtual and augmented
	naresh adhikari-abstract.pdf

