Artificial Kidney and Hemodialysis

Zhongping Huang, Ph.D.

Biomedical Engineering Program West Chester University

February 6, 2020

Outline

Introduction

Experimental Approach

Theoretical Approach

Future Research and Collaborations

Introduction

Kidney disease is a major problem, affecting about 5% of the population in the United States

Accounts for about 60,000 deaths per year

~ 500,000 Americans are sustained on artificial kidney

Cost: \$23 billion per year

Human Kidneys

Function:

- Remove waste products
- Secrete hormone
- re-absorb useful solutes

Hemodialysis Process

Artificial Kidney

Membrane cross-section

Inner diameter: ~ 200 µm Membrane thickness: ~ 20 µm Material: Cellulose Triacetate, Polysulfone, Polyamide, Polyethersulfone

Membrane surface Pore size: ~ 5 nm Performance Evaluation $J = k_o A (C_B - C_D)$

 $[moles/min = cm/min * cm^2 * moles/cm^3]$

 $1/k_o = 1/k_B + 1/k_M + 1/k_D$ or $R_o = R_B + R_M + R_D$

In Vitro Dialysis Experiment Setup

1. Solute clearance:

The volume of solution cleared of a particular solute in a given time

$$Cl = \frac{(Q_{bi}C_{bi} - Q_{bo}C_{bo})}{C_{bi}}$$

2. Sieving coefficient:How easily the solute can passthrough the membrane by solventdrag

$$SC = \frac{2C_{uf}}{C_{Bi} + C_{Bo}}$$

Blood side

Dialysate side

Revaclear Max

Revaclear Max

Evaluation of Local Clearance for Dialyzers

Inner Ring (Dialyzer 1)

Middle Ring (Dialyzer 2)

Outer Ring (Dialyzer 3)

Experiment Setup

Urea Clearance at Different Annular Ring in CT 190 G

*: P< 0.05 vs. inner ring

* *: P< 0.01 vs. inner ring

DISCUSSION

Possible cause of spike-like velocity distribution across the whole cross section, and flow redistribution along the length of the dialyzer in the dialysate compartment ...

DISCUSSION

Spacer yarns improved dialysate-side flow distribution ...

•Keep individual hollow fibers apart

Stabilize the entire hollow-fiber bundle within the dialyzer housing

New membranes development

Current Problems in HD

- Low performance (low middle molecular solutes clearance)
- Albumin loss (cellulose, polymer membrane)
- Potential pyrogen back transfer into blood side
- Low reusability

Aluminum Anodization

 $4AI + 3O_2 \Leftrightarrow 2AI_2O_3 \quad \text{(Anode)}$ $2H^+ + 2e \Leftrightarrow H_2 \qquad \text{(Cathode)}$

Comparison of Ceramic Membrane and Synthetic Membrane

Cross section

Ceramic Membrane

Polysulfone Membrane

Pore Size Distribution and Hydraulic Permeability (Ceramic Membrane)

•39.1x10⁻¹⁵ m²·s⁻¹·Pa⁻¹

(ceramic membrane at 3% sulfuric acid)

•15.1×10⁻¹⁵ m²·s⁻¹·Pa⁻¹

(Syntra 160 membrane)

Mini Module Dialyzer

Nano-porous alumina tube

Table 1: Solute clearance for the alumina membrane

Solute	Clearance mL/min	Reduction ratio/hour
Urea	9.03 ± 0.15	0.36 ± 0.01
Creatinine	8.96 ± 0.15	0.36 ± 0.01
Vancomycin	7.81 ± 0.18	0.31 ± 0.01
Inulin	6.88 ± 0.31	0.28 ± 0.01

* Normal Urea Reduction Ratio is 0.22/hour

Table 2: Solute sieving coefficient (Sc) for the alumina membrane

Solute	R _{obs}	Sc
Urea	0.014	0.98
Creatinine	0.002	0.99
Vancomycin	0.044	0.95
Inulin	0.047	0.95
Albumin	_	< 0.003

Continuous renal replacement therapy (CRRT)

Pre and Post Dilution High Volume Continuous Hemofiltration

filtration fraction

$$FF = \frac{Q_{uf}}{Q_b(1 - HCT)}$$

Table 1 Effect of Dilution on Solutes Clearance

	Urea	Creatinine	Vancomycin	Inulin
100 % PRE	35.1 ± 0.7	35.5 ± 0.3	36.7 ± 3.8	33.6 ± 3.1
75 % PRE	41.1 ± 0.4	40.9 ± 0.6	$\textbf{32.1}\pm\textbf{0.8}$	$\textbf{32.1} \pm \textbf{1.7}$
50 % PRE	45.0 ± 0.7	45.3 ± 0.4	32.7 ± 2.3	33.8 ± 0.9
25 % PRE	51.5 ± 1.3	50.6 ± 0.9	35.2 ± 1.5	35.5 ± 1.1
100 % POST	54.0 ± 1.2	54.0 ± 1.2	31.9 ± 0.6	34.7 ± 5.6
P-Value	1.596E-08 *	3.693E-09 *	0.0738366	0.704991

DISCUSSION

- For a given set of flow parameters, the balance between pre-dilution and post-dilution had a significant impact on urea and creatinine clearances.
- The transition from pure post-dilution to pure pre-dilution resulted in an average decrease in small solute clearance of 35%.
- Middle molecule clearances were relatively insensitive to the effects of pre-dilution versus post-dilution,
- Dilution mode had no significant impact on clearance of either vancomycin or inulin.

Theoretical Approach

Computer Simulation of Mass Transfer in Artificial Kidney

Computational domain of blood flow

Blood flow is governed by Navier-Stokes equations

Continuity equation:

$$\nabla \cdot \mathbf{u} = 0$$

Momentum equations:

$$\mathbf{u} \cdot \nabla u_r = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \frac{\mu}{\rho} \nabla^2 u_r \qquad \mathbf{u} \cdot \nabla u_z = -\frac{1}{\rho} \frac{\partial p}{\partial z} + \frac{\mu}{\rho} \nabla^2 u_z$$

Concentration equation:

$$\mathbf{u} \cdot \nabla C = D \,\nabla^2 C$$

Computational domain of dialysate flow

Dialysate flow is governed by Darcy equations:

Continuity equation:

Momentum equations:

Concentration equation:

$$\nabla \cdot \mathbf{u} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_r}{\partial r} \right) + \frac{\partial u_z}{\partial z} = S_m \qquad S_m = \frac{J_v \cdot A_m}{\Delta V}$$

$$u_r = -\frac{1}{\mu}k_{rr}\frac{\partial p}{\partial r}$$
 $u_z = -\frac{1}{\mu}k_{zz}\frac{\partial p}{\partial z}$

$$\mathbf{u} \cdot \nabla C_s = D \nabla^2 C + S_s$$

$$S_{s} = \frac{J_{s} \cdot A_{m}}{\Delta V}$$

Kedem-Katchalsky (K-K) equations:

Results...

Distribution of pressure in dialysate side (CT190G, $Q_b = 360$ ml/min, $Q_d = 500$ ml/min, $P_{dout} = P_{bout} = 0$)

Distribution of urea concentration in dialysate side (CT190G, $Q_b = 360$ ml/min, $Q_d = 500$ ml/min, $C_{bin} = 0.48$ g/l)

Design optimal artificial kidney

Flower-like blood inlet header design

Bio-Artificial Kidney / Cell Cryopreservation

- culture kidney cells in the hollow fiber to secrete hormone and re-absorb useful solutes
- cryopreserve kidney cells

Wearable Artificial Kidney

Schematic sketch of wearable renal support device

Thanks for Attention

